当前位置: X-MOL 学术Macromol. Rapid Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanomechanical Properties of a Supramolecular Helix Stabilized by Non-Covalent Interactions.
Macromolecular Rapid Communications ( IF 4.6 ) Pub Date : 2020-09-09 , DOI: 10.1002/marc.202000453
Huijie Wang 1 , Bowen Shen 1 , Yu Song 1 , Myongsoo Lee 1 , Wenke Zhang 1
Affiliation  

Supramolecular helices have unique properties and many potential applications, such as chiral separation and asymmetric catalysis. Mechanical property (stability) of the supramolecular helix plays important roles in their functions. Due to the limitation of detection method, it is quite challenging to investigate nanomechanical properties of individual supramolecular helices stabilized by pure supramolecular interactions. Here atomic force microscopy (AFM)‐based single molecule force spectroscopy (SMFS) is used to study the nanomechanical properties of a thermal‐responsive supramolecular helix. The unwinding force plateau is observed in the force‐extension curve, and the rupture force of the helix is dependent on the loading rate. In addition, the force‐induced unwinding process is reversible and there is almost no energy dissipation in the process. Furthermore, the result of thermal shape‐fluctuation analysis shows that the persistence length of the supramolecular helix is about 222 nm, which is much larger than helical structure formed by double‐stranded DNA (dsDNA). However, because of its unique backbone structure, the supramolecular helix exhibits higher dynamic flexibility during force‐induced deformation, since the persistence length determined from the stretching experiment is much smaller (1.1 nm).

中文翻译:

通过非共价相互作用稳定的超分子螺旋的纳米力学性能。

超分子螺旋具有独特的性质和许多潜在的应用,例如手性分离和不对称催化。超分子螺旋的机械性质(稳定性)在其功能中起重要作用。由于检测方法的局限性,研究通过纯超分子相互作用稳定的单个超分子螺旋的纳米机械性能是非常具有挑战性的。在这里,基于原子力显微镜(AFM)的单分子力谱(SMFS)用于研究热响应性超分子螺旋的纳米力学性能。在力-延伸曲线中观察到了退绕力的平稳状态,螺旋线的断裂力取决于加载速率。此外,力引起的放卷过程是可逆的,并且在此过程中几乎没有能量消耗。此外,热形状波动分析的结果表明,超分子螺旋的持久长度约为222 nm,远大于双链DNA(dsDNA)形成的螺旋结构。但是,由于其独特的骨架结构,超分子螺旋在力引起的变形过程中表现出更高的动态柔韧性,因为从拉伸实验确定的持久长度要小得多(1.1 nm)。
更新日期:2020-09-09
down
wechat
bug