当前位置: X-MOL 学术Int. Commun. Heat Mass Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Impact of variable viscosity on peristaltic motion with entropy generation
International Communications in Heat and Mass Transfer ( IF 7 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.icheatmasstransfer.2020.104826
Y. Akbar , F.M. Abbasi

Abstract Entropy generation is a crucial aspect of every heat transfer processes. It helps to reduce irreversibility factor in a system. Entropy generation analysis is important in many conventional industrial sectors wherever heat transfer and fluid flows are involved. Therefore, present investigation addresses the analysis of entropy generation for nanofluid flow driven by peristaltic mechanism through an asymmetric channel. Governing equations included the effects of thermophoresis, mixed convection and Brownian motion. Temperature dependent viscosity is also included. Buongiorno's model for the analysis of nanofluids is employed. Mathematical modeling incorporates long wavelength approximation. Built-in numerical solver NDSolve is utilized to obtain numerical results of arising nonlinear differential equations. Analysis has been presented for temperature, Bejan number, entropy generation, concentration profile, velocity profile, heat and mass transfer rates at channel wall. Outcomes exhibit effective decrease in entropy generation and temperature with an increment in viscosity parameter. Further, velocity and rate of heat transfer at boundary increase by enhancing the values of temperature Grashoff number.

中文翻译:

可变粘度对具有熵产生的蠕动运动的影响

摘要 熵产生是每个传热过程的一个重要方面。它有助于减少系统中的不可逆因素。在涉及传热和流体流动的许多传统工业部门中,熵生成分析很重要。因此,目前的研究解决了通过非对称通道由蠕动机制驱动的纳米流体流动的熵生成分析。控制方程包括热泳、混合对流和布朗运动的影响。还包括随温度变化的粘度。使用 Buongiorno 的纳米流体分析模型。数学建模结合了长波长近似。内置数值求解器 NDSolve 用于获得出现的非线性微分方程的数值结果。已经对温度、Bejan 数、熵产生、浓度分布、速度分布、通道壁的传热和传质速率进行了分析。结果显示熵产生和温度随着粘度参数的增加而有效降低。此外,通过提高温度 Grashoff 数的值,边界处的传热速度和速率会增加。
更新日期:2020-11-01
down
wechat
bug