当前位置: X-MOL 学术Nucl. Fusion › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cause and impact of low-frequency chirping modes in DIII-D hybrid discharges
Nuclear Fusion ( IF 3.3 ) Pub Date : 2020-09-07 , DOI: 10.1088/1741-4326/ab868c
D. Liu 1 , W.W. Heidbrink 1 , M. Podest 2 , Z.Z. Ren 3 , L. Bardczi 4 , E.D. Fredrickson 2 , G.Y. Fu 5 , C.C. Petty 4 , K.E. Thome 4 , F. Turco 6 , M.A. Van Zeeland 4
Affiliation  

Significant variations in MHD activity and fast-ion transport are observed in the DIIID high-beta, steady-state hybrid discharges with a mixture of Electron Cyclotron (EC) waves and Neutral Beam Injection (NBI). When Electron Cyclotron Heating (ECH) or Current Drive (ECCD) is applied, Alfven Eigenmodes (AEs) are usually suppressed and replaced by low-frequency bursting modes. The analysis of a recently compiled database of hybrid discharges suggests that the change of the fast-ion pressure especially the perpendicular pressure is the main factor responsible for the instability transition although the transition in some discharges can also be explained by a slight drop of the safety factor qmin. The lower ratio of fast-ion injection speed vinj to Alfven speed valfven and slight drop of safety factor qmin during ECCD may also facilitate the transition. The database shows that AEs mainly occur when the fast-ion fraction Pf/Ptotal is less than 0.53 and vinj/valfven is greater than 0.50, while low-frequency bursting modes appear in the opposite regime. Here, Pf and Ptotal are the central fast-ion pressure from classical prediction and total plasma pressure, respectively. The correlation with qmin is weaker and qmin is around unity in all the cases. The reason why the instability transition correlates with Pf/Ptotal and vinj/valfven is that they can significantly modify the drive of low-frequency bursting modes and AEs. The explanation is supported by the observation that low-frequency bursting modes are rarely seen in the hybrids with NBI only, with EC waves and counter-NBI, or with high plasma density. A careful check of the low-frequency bursting modes suggests that they are mainly chirping (neoclassical) tearing modes [referred to as chirping (N)TM], i.e. the mode frequency firstly jumps up from the steady (N)TM frequency, then chirps down, and finally returns to the steady (N)TM frequency. Occasionally, the (N)TMs are fully stabilized and replaced with pure fishbones. The resonance condition calculation and 'Kick' model simulations suggest that (N)TMs and fishbones can interact through modification of the fast ion distribution in phase space, which influences the drive.

中文翻译:

DIII-D混合放电中低频啁啾模式的成因及影响

在混合电子回旋加速器 (EC) 波和中性束注入 (NBI) 的 DIIID 高β、稳态混合放电中观察到 MHD 活动和快速离子传输的显着变化。当应用电子回旋加热 (ECH) 或电流驱动 (ECCD) 时,通常会抑制阿尔芬本征模式 (AE) 并由低频突发模式取代。对最近编译的混合放电数据库的分析表明,快离子压力特别是垂直压力的变化是造成不稳定转变的主要因素,尽管某些放电的转变也可以用安全性的轻微下降来解释因子 qmin。快速离子注入速度 vinj 与 Alfven 速度 valfven 的较低比率和 ECCD 期间安全系数 qmin 的轻微下降也可能促进过渡。数据库显示,AEs 主要发生在快离子分数 Pf/Ptotal 小于 0.53 和 vinj/valfven 大于 0.50 时,而低频爆发模式则出现在相反的状态。这里,Pf 和 Ptotal 分别是经典预测和总等离子体压力的中心快离子压力。与 qmin 的相关性较弱,并且 qmin 在所有情况下都接近 1。不稳定转变与 Pf/Ptotal 和 vinj/valfven 相关的原因是它们可以显着修改低频突发模式和 AE 的驱动。观察结果支持这一解释,即低频爆发模式很少出现在仅具有 NBI、EC 波和反 NBI 的混合体中,或具有高等离子体密度的混合体中。仔细检查低频突发模式表明它们主要是啁啾(新古典)撕裂模式[称为啁啾(N)TM],即模式频率首先从稳定(N)TM频率跳升,然后啁啾下降,最后回到稳定的 (N)TM 频率。有时,(N)TMs 会完全稳定并被纯鱼骨取代。共振条件计算和“踢”模型模拟表明 (N) TM 和鱼骨可以通过修改相空间中的快速离子分布来相互作用,这会影响驱动。仔细检查低频突发模式表明它们主要是啁啾(新古典)撕裂模式[称为啁啾(N)TM],即模式频率首先从稳定(N)TM频率跳升,然后啁啾下降,最后回到稳定的 (N)TM 频率。有时,(N)TMs 会完全稳定并被纯鱼骨取代。共振条件计算和“踢”模型模拟表明 (N) TM 和鱼骨可以通过修改相空间中的快速离子分布来相互作用,这会影响驱动。仔细检查低频突发模式表明它们主要是啁啾(新古典)撕裂模式[称为啁啾(N)TM],即模式频率首先从稳定(N)TM频率跳升,然后啁啾下降,最后回到稳定的 (N)TM 频率。有时,(N)TMs 会完全稳定并被纯鱼骨取代。共振条件计算和“踢”模型模拟表明 (N) TM 和鱼骨可以通过修改相空间中的快速离子分布来相互作用,这会影响驱动。并最终返回到稳定的 (N)TM 频率。有时,(N)TMs 会完全稳定并被纯鱼骨取代。共振条件计算和“踢”模型模拟表明 (N) TM 和鱼骨可以通过修改相空间中的快速离子分布来相互作用,这会影响驱动。并最终返回到稳定的 (N)TM 频率。有时,(N)TMs 会完全稳定并被纯鱼骨取代。共振条件计算和“踢”模型模拟表明 (N) TM 和鱼骨可以通过修改相空间中的快速离子分布来相互作用,这会影响驱动。
更新日期:2020-09-07
down
wechat
bug