当前位置: X-MOL 学术arXiv.cs.CC › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Strong rainbow disconnection in graphs
arXiv - CS - Computational Complexity Pub Date : 2020-09-06 , DOI: arxiv-2009.02664
Xuqing Bai, Xueliang Li

Let $G$ be a nontrivial edge-colored connected graph. An edge-cut $R$ of $G$ is called a {\it rainbow edge-cut} if no two edges of $R$ are colored with the same color. For two distinct vertices $u$ and $v$ of $G$, if an edge-cut separates them, then the edge-cut is called a {\it $u$-$v$-edge-cut}. An edge-colored graph $G$ is called \emph{strong rainbow disconnected} if for every two distinct vertices $u$ and $v$ of $G$, there exists a both rainbow and minimum $u$-$v$-edge-cut ({\it rainbow minimum $u$-$v$-edge-cut} for short) in $G$, separating them, and this edge-coloring is called a {\it strong rainbow disconnection coloring} (srd-{\it coloring} for short) of $G$. For a connected graph $G$, the \emph{strong rainbow disconnection number} (srd-{\it number} for short) of $G$, denoted by $\textnormal{srd}(G)$, is the smallest number of colors that are needed in order to make $G$ strong rainbow disconnected. In this paper, we first characterize the graphs with $m$ edges such that $\textnormal{srd}(G)=k$ for each $k \in \{1,2,m\}$, respectively, and we also show that the srd-number of a nontrivial connected graph $G$ equals the maximum srd-number among the blocks of $G$. Secondly, we study the srd-numbers for the complete $k$-partite graphs, $k$-edge-connected $k$-regular graphs and grid graphs. Finally, we show that for a connected graph $G$, to compute $\textnormal{srd}(G)$ is NP-hard. In particular, we show that it is already NP-complete to decide if $\textnormal{srd}(G)=3$ for a connected cubic graph. Moreover, we show that for a given edge-colored (with an unbounded number of colors) connected graph $G$ it is NP-complete to decide whether $G$ is strong rainbow disconnected.

中文翻译:

图中的强彩虹断开

令 $G$ 是一个非平凡的边着色连通图。如果没有 $R$ 的两条边是相同颜色的,则 $G$ 的边缘切割 $R$ 被称为 {\it Rainbow edge-cut}。对于$G$的两个不同的顶点$u$和$v$,如果边切割将它们分开,则边切割称为{\it $u$-$v$-edge-cut}。如果对于 $G$ 的每两个不同的顶点 $u$ 和 $v$,同时存在彩虹和最小值 $u$-$v$-,则边色图 $G$ 被称为 \emph{strong Rainbow disconnected} $G$中的边缘切割(简称{\​​it Rainbow minimum $u$-$v$-edge-cut}),将它们分开,这种边缘着色被称为{\it strong Rainbow disconnecting coloring}(srd -{\it coloring} 简称)$G$。对于连通图$G$,$G$的\emph{强彩虹断开数}(简称srd-{\it number}),记为$\textnormal{srd}(G)$,是为了使 $G$ 强彩虹断开连接所需的最少颜色数。在本文中,我们首先表征具有 $m$ 边的图,使得 $\textnormal{srd}(G)=k$ 分别对应于每个 $k \in \{1,2,m\}$,并且我们还表明非平凡连通图 $G$ 的 srd-number 等于 $G$ 块中的最大 srd-number。其次,我们研究完整的 $k$-partite 图、$k$-edge-connected $k$-regular 图和网格图的 srd-numbers。最后,我们证明对于连通图 $G$,计算 $\textnormal{srd}(G)$ 是 NP-hard。特别是,我们表明,对于连通三次图,确定 $\textnormal{srd}(G)=3$ 已经是 NP 完全的。而且,
更新日期:2020-09-08
down
wechat
bug