当前位置: X-MOL 学术Proc. Natl. Acad. Sci. U.S.A. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling the stability of polygonal patterns of vortices at the poles of Jupiter as revealed by the Juno spacecraft.
Proceedings of the National Academy of Sciences of the United States of America ( IF 11.1 ) Pub Date : 2020-09-29 , DOI: 10.1073/pnas.2008440117
Cheng Li 1 , Andrew P Ingersoll 2 , Alexandra P Klipfel 2 , Harriet Brettle 2
Affiliation  

From its pole-to-pole orbit, the Juno spacecraft discovered arrays of cyclonic vortices in polygonal patterns around the poles of Jupiter. In the north, there are eight vortices around a central vortex, and in the south there are five. The patterns and the individual vortices that define them have been stable since August 2016. The azimuthal velocity profile vs. radius has been measured, but vertical structure is unknown. Here, we ask, what repulsive mechanism prevents the vortices from merging, given that cyclones drift poleward in atmospheres of rotating planets like Earth? What atmospheric properties distinguish Jupiter from Saturn, which has only one cyclone at each pole? We model the vortices using the shallow water equations, which describe a single layer of fluid that moves horizontally and has a free surface that moves up and down in response to fluid convergence and divergence. We find that the stability of the pattern depends mostly on shielding—an anticyclonic ring around each cyclone, but also on the depth. Too little shielding and small depth lead to merging and loss of the polygonal pattern. Too much shielding causes the cyclonic and anticyclonic parts of the vortices to fly apart. The stable polygons exist in between. Why Jupiter’s vortices occupy this middle range is unknown. The budget—how the vortices appear and disappear—is also unknown, since no changes, except for an intruder that visited the south pole briefly, have occurred at either pole since Juno arrived at Jupiter in 2016.



中文翻译:

朱诺航天器揭示了模拟木星两极涡旋多边形图案的稳定性。

朱诺从极地轨​​道到极地轨道航天器在木星两极周围以多边形图案发现了一系列旋风涡旋。在北部,围绕中心涡流有八个涡流,在南部,有五个涡流。自2016年8月以来,模式和定义它们的单个涡流一直保持稳定。已测量了方位角速度曲线与半径的关系,但垂直结构未知。在这里,我们问,考虑到旋风在地球等旋转行星的大气中向极点漂移,哪种排斥机制阻止了漩涡的融合?木星与土星的区别是什么大气特征?土星的两极只有一个气旋?我们使用浅水方程对涡旋进行建模,其中描述了单层流体,该层可水平移动并具有自由表面,该自由表面会根据流体的会聚和发散而上下移动。我们发现,图案的稳定性主要取决于屏蔽效果-每个旋风分离器周围的反气旋环,但也取决于深度。太少的屏蔽和小的深度会导致多边形图案的合并和丢失。太多的屏蔽会导致涡旋的旋风和反旋风部分飞散。两者之间存在稳定的多边形。为什么木星的涡旋占据这个中间范围尚不清楚。预算(涡流的出现和消失的方式)也是未知的,因为自从那以后,除了短暂访问过南极的入侵者以外,没有发生任何变化 我们发现,图案的稳定性主要取决于屏蔽效果-每个旋风分离器周围的反气旋环,还取决于深度。太少的屏蔽层和很小的深度会导致多边形图案合并和丢失。太多的屏蔽会导致涡旋的旋风和反旋风部分飞散。两者之间存在稳定的多边形。为什么木星的涡旋占据这个中间范围尚不清楚。预算(涡流的出现和消失的方式)也是未知的,因为自从那以后,除了短暂访问过南极的入侵者之外,没有发生任何变化,我们发现,图案的稳定性主要取决于屏蔽效果-每个旋风分离器周围的反气旋环,还取决于深度。太少的屏蔽和小的深度会导致多边形图案的合并和丢失。太多的屏蔽会导致涡旋的旋风和反旋风部分飞散。两者之间存在稳定的多边形。为什么木星的涡旋占据这个中间范围尚不清楚。预算(涡流的出现和消失的方式)也是未知的,因为自从那以后,除了短暂访问过南极的入侵者之外,没有发生任何变化,为什么木星的涡旋占据这个中间范围尚不清楚。预算(涡流的出现和消失的方式)也是未知的,因为自从那以后,除了短暂访问过南极的入侵者之外,没有发生任何变化,为什么木星的涡旋占据这个中间范围尚不清楚。预算(涡流的出现和消失的方式)也是未知的,因为自从那以后,除了短暂访问过南极的入侵者之外,没有发生任何变化,朱诺于2016年抵达木星。

更新日期:2020-09-30
down
wechat
bug