当前位置: X-MOL 学术J. Geochem. Explor. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sourcing of critical elements and industrial minerals from mine waste – The final evolutionary step back to sustainability of humankind?
Journal of Geochemical Exploration ( IF 3.9 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.gexplo.2020.106638
Bernhard Dold

Abstract Humanity developed from bipedal hominidae via hunters and collectors to a modern high tech society in about 6 Ma. Survival was ensured by a thorough and sustainable use of the available resources during 5,999,750 years. In the last ~250 years (Anthropocene), humanity left the path of sustainability, due to extensive growth, extensive use of metals and fossil energy resources, destabilizing the global ecosystem to an extent, which endangers now the future of humanity itself. In metal mining, in most cases only a minor percentage of the extracted materials are the valuable target elements (e.g. Fe or Al ores 20–70%, Zn 2–15%, Pb 1–10%, Cu 0.2–6%, REE 0.1–0.5%, Au 0.5–20 g/t). Thus, the vast majority of the extracted material is defined as waste, which is deposited in disposal facilities like tailings impoundments, lakes or the sea and in waste-rock dumps, or is backfilled into open pits or underground mines. These mine wastes are the source of environmental pollution, for example via Acid Mine Drainage formation, and fatal risks like during dam failures. To minimize the risk from mine waste in the future, mine waste has to be eliminated, in order to gain back the social license to operate. This applies for both, fresh mine waste and historical mine waste. Latter can still contain important metal contents (specifically the overlooked critical metals like REE, PGE, and battery metals like Co, Ni, Li, Mn), and have therefore a high potential for successful exploration. Additionally, other georesources as sand and industrial minerals will increase the demand in the future and metal mining can provide an important portion as secondary by-products. An inline separation sequence can separate the material in different mineral groups producing economic valuable mineral concentrates. The major volumes of silicates are non-hazardous and, if separated accurately, they can be used as industrial minerals or for construction material. Key is that reactive minerals like pyrite are separated from the non-reactive mineral assemblage. Also, high-tech applications can be found for these materials as for example quartz for solar cell production and glass industry or micas and pyrite for semi-conductors for solar cells. Pyrite itself is usually seen as the trouble maker producing acid mine drainage (AMD), but it is also a resource for Fe, S, H2SO4, and valuable trace elements like Ni, Co, Cu, Zn, Au, Ag, V. Proven mineral processing techniques exist to separate these mineral groups from each and other and to produce different concentrates. Translated into the butcher business, mining uses today from a 500 kg beef, only the 5 kg of filet (1% in case of copper mining) and the rest of the cow is thrown into the river, with the obvious effect that the cadaver oxidize and decompose and pollute the water. The challenge for the mining industry is today to make from the 495 kg of the cow an economic gain, and ensure the raw material supply for the future, instead of giving a legacy of environmental pollution to the next generations.

中文翻译:

从矿山废料中采购关键元素和工业矿物——回归人类可持续发展的最后一步?

摘要 在大约 6 Ma 的时间里,人类从双足人类通过猎人和收藏家发展到现代高科技社会。在 5,999,750 年的时间里,对可用资源的彻底和可持续利用确保了生存。在过去的~250年(人类世)中,由于粗放增长、金属和化石能源资源的大量使用,人类离开了可持续发展的道路,在一定程度上破坏了全球生态系统的稳定,危及人类自身的未来。在金属采矿中,在大多数情况下,提取的材料中只有一小部分是有价值的目标元素(例如 Fe 或 Al 矿石 20–70%、Zn 2–15%、Pb 1–10%、Cu 0.2–6%、REE 0.1–0.5%,金 0.5–20 克/吨)。因此,绝大多数提取的材料被定义为废物,它们存放在尾矿库等处置设施中,湖泊或海洋和废石堆中,或回填到露天矿坑或地下矿山。这些矿山废物是环境污染的来源,例如通过酸性矿山排水形成,以及大坝溃决等致命风险。为了将未来矿山废弃物的风险降至最低,必须消除矿山废弃物,以重新获得社会经营许可。这适用于新鲜矿山废料和历史矿山废料。后者仍然可以包含重要的金属成分(特别是被忽视的关键金属,如 REE、PGE 和电池金属,如 Co、Ni、Li、Mn),因此具有成功勘探的巨大潜力。此外,沙子和工业矿物等其他地质资源将增加未来的需求,金属开采可以作为次要副产品提供重要部分。在线分离序列可以分离不同矿物组中的材料,生产具有经济价值的精矿。大部分硅酸盐是无害的,如果分离准确,它们可用作工业矿物或建筑材料。关键是将黄铁矿等活性矿物与非活性矿物组合分离。此外,这些材料还有高科技应用,例如用于太阳能电池生产和玻璃工业的石英,或用于太阳能电池半导体的云母和黄铁矿。黄铁矿本身通常被视为产生酸性矿山排水 (AMD) 的麻烦制造者,但它也是 Fe、S、H2SO4 和有价值的微量元素(如 Ni、Co、Cu、Zn、Au、Ag、V)的资源。现有的经过验证的矿物加工技术可以将这些矿物群彼此分离并生产不同的精矿。翻译成屠夫业务,今天的采矿业使用 500 公斤牛肉,只有 5 公斤的鱼片(铜矿开采的情况下为 1%)和其余的牛被扔进河里,尸体氧化效果明显并分解和污染水。如今,采矿业面临的挑战是,从 495 公斤的奶牛中获得经济收益,并确保未来的原材料供应,而不是将环境污染遗留给下一代。尸体氧化分解污染水体效果明显。如今,采矿业面临的挑战是,从 495 公斤的奶牛中获得经济收益,并确保未来的原材料供应,而不是将环境污染遗留给下一代。尸体氧化分解污染水体效果明显。如今,采矿业面临的挑战是,从 495 公斤的奶牛中获得经济收益,并确保未来的原材料供应,而不是将环境污染遗留给下一代。
更新日期:2020-12-01
down
wechat
bug