当前位置: X-MOL 学术Powder Metall. Met. Ceram. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Structure Formation and Hardness of High-Entropy Alloy Coatings Obtained by Electrospark Deposition
Powder Metallurgy and Metal Ceramics ( IF 1 ) Pub Date : 2020-07-01 , DOI: 10.1007/s11106-020-00152-7
O.M. Myslyvchenko , O.P. Gaponova , V.B. Tarelnyk , M. O. Krapivka

This paper examines the use of high-entropy alloys (HEAs) as materials for electrospark deposition (ESD). This method is known to produce high-quality protective coatings with a long service life. Arc-melted AlCrFeCoNiCux (x = 0 and 2 mole) cast alloys were used in the research. The HEA coatings were applied to steel 45 employing an Elitron-52A unit. The phase composition, hardness, and microstructure of the cast alloys and associated coatings were compared. The starting HEAs were found to have an inhomogeneous microstructure peculiar to the cast alloys and crystallize to form simple solid solutions with bcc and fcc phases. The AlCrFeCoNi alloy has higher hardness (6229 MPa) than the AlCrFeCoNiCu2 alloy does (5814 GPa). Studies of the structure and phase state of the samples showed that they consisted of an upper layer (coating), transition zone, and substrate with a ferrite–pearlite structure. The hardness, thickness, and continuity of the coatings increase with higher discharge energies Wd in ESD. At Wd = 0.13 J, the coating is 20 μm thick and has 70% continuity; at Wd = 4.6 J, the coating becomes 130 μm thick and is 100% continuous. In contrast to the cast alloys, the high-entropy coatings show higher microhardness: 6230 and 7320 MPa for AlCrFeCoNiCu2 and AlCrFeCoNi, respectively, at a discharge energy of 4.6 J. The coating thickness increases when copper is added to the electrode material. Simple solid solutions peculiar to high-entropy alloys form in both the cast alloys and the coatings. Unlike the cast alloys, the coatings are characterized by homogeneous microstructure.

中文翻译:

电火花沉积获得的高熵合金涂层的组织形成和硬度

本文研究了高熵合金 (HEA) 作为电火花沉积 (ESD) 材料的使用。众所周知,这种方法可以生产具有较长使用寿命的高质量保护涂层。研究中使用了电弧熔化的 AlCrFeCoNiCux(x = 0 和 2 摩尔)铸造合金。使用 Elitron-52A 装置将 HEA 涂层施加到钢 45 上。比较了铸造合金和相关涂层的相组成、硬度和微观结构。发现起始 HEA 具有铸造合金特有的不均匀微观结构,并结晶形成具有 bcc 和 fcc 相的简单固溶体。AlCrFeCoNi 合金的硬度 (6229 MPa) 高于 AlCrFeCoNiCu2 合金 (5814 GPa)。对样品结构和相态的研究表明,它们由上层(涂层)、过渡区、和具有铁素体-珠光体结构的衬底。涂层的硬度、厚度和连续性随着 ESD 中更高的放电能量 Wd 增加。在 Wd = 0.13 J 时,涂层厚度为 20 μm,连续性为 70%;在 Wd = 4.6 J 时,涂层厚度变为 130 μm,并且是 100% 连续的。与铸造合金相比,高熵涂层显示出更高的显微硬度:AlCrFeCoNiCu2 和 AlCrFeCoNi 分别为 6230 和 7320 MPa,放电能量为 4.6 J。当电极材料中添加铜时,涂层厚度增加。高熵合金特有的简单固溶体在铸造合金和涂层中形成。与铸造合金不同,涂层的特征是均匀的微观结构。并且涂层的连续性随着 ESD 中更高的放电能量 Wd 而增加。在 Wd = 0.13 J 时,涂层厚度为 20 μm,连续性为 70%;在 Wd = 4.6 J 时,涂层厚度变为 130 μm,并且是 100% 连续的。与铸造合金相比,高熵涂层显示出更高的显微硬度:AlCrFeCoNiCu2 和 AlCrFeCoNi 分别为 6230 和 7320 MPa,放电能量为 4.6 J。当电极材料中添加铜时,涂层厚度增加。高熵合金特有的简单固溶体在铸造合金和涂层中形成。与铸造合金不同,涂层的特征是均匀的微观结构。并且涂层的连续性随着 ESD 中更高的放电能量 Wd 而增加。在 Wd = 0.13 J 时,涂层厚度为 20 μm,连续性为 70%;在 Wd = 4.6 J 时,涂层厚度变为 130 μm,并且是 100% 连续的。与铸造合金相比,高熵涂层显示出更高的显微硬度:AlCrFeCoNiCu2 和 AlCrFeCoNi 分别为 6230 和 7320 MPa,放电能量为 4.6 J。当电极材料中添加铜时,涂层厚度增加。高熵合金特有的简单固溶体在铸造合金和涂层中形成。与铸造合金不同,涂层的特征是均匀的微观结构。与铸造合金相比,高熵涂层显示出更高的显微硬度:AlCrFeCoNiCu2 和 AlCrFeCoNi 分别为 6230 和 7320 MPa,放电能量为 4.6 J。当电极材料中添加铜时,涂层厚度增加。高熵合金特有的简单固溶体在铸造合金和涂层中形成。与铸造合金不同,涂层的特征是均匀的微观结构。与铸造合金相比,高熵涂层显示出更高的显微硬度:AlCrFeCoNiCu2 和 AlCrFeCoNi 分别为 6230 和 7320 MPa,放电能量为 4.6 J。当电极材料中添加铜时,涂层厚度增加。高熵合金特有的简单固溶体在铸造合金和涂层中形成。与铸造合金不同,涂层的特征是均匀的微观结构。
更新日期:2020-07-01
down
wechat
bug