当前位置: X-MOL 学术J. Mater. Eng. Perform. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Stress–Strain Properties of Artificially Aged 6061 Al Alloy: Experiments and Modeling
Journal of Materials Engineering and Performance ( IF 2.3 ) Pub Date : 2020-09-08 , DOI: 10.1007/s11665-020-05080-6
Rasid Ahmed Yildiz , Safak Yilmaz

The paper examines the tensile deformation behavior of the Al-Mg-Si alloy (6061 Al alloy) subjected to various aging conditions. 6061 Al alloy is commonly used in aerospace/aircraft industry due to its performance on corrosion resistance, formability, and weldability. Five different heat treatment procedures, including T4 natural aging and T6 peak-strength temper conditions, were designed to investigate the effect of artificial aging on the mechanical behavior of the alloy. Tensile tests were performed to determine the stress–strain behavior of the material both in uniform and non-uniform deformation regions. Mechanical material properties including yield, ultimate and fracture strengths, uniform and total strains, hardness, strength coefficient, and strain-hardening exponent were obtained experimentally. The relationship between equivalent strain, equivalent stress, and hardness is also examined. The fracture strength of specimens was determined to be less than the Holloman model predictions for the fracture strains of specimens. Void development, which is dependent on the amount of plastic strain development, is determined to be the main reason for this discrepancy between the Holloman model and fracture stress. To calculate the homogeneous stress in the metal matrix of the porous domain, Eshelby-based Mori–Tanaka method (MTM) was used. The calculated average stress in the metal matrix shows good agreement with the Holloman equation predictions. Thus, void development explains the interrupted strain hardening after necking.



中文翻译:

人工时效6061铝合金的应力-应变特性:实验和建模

本文研究了Al-Mg-Si合金(6061 Al合金)在各种时效条件下的拉伸变形行为。6061铝合金由于其耐腐蚀性,可成形性和可焊性的性能而广泛用于航空航天工业。设计了五种不同的热处理程序,包括T4自然时效和T6峰值强度回火条件,以研究人工时效对合金力学性能的影响。进行拉伸试验以确定材料在均匀和非均匀变形区域的应力-应变行为。通过实验获得了机械材料特性,包括屈服强度,极限强度和断裂强度,均匀应变和总应变,硬度,强度系数和应变硬化指数。等效应变之间的关系 等效应力和硬度也进行了检查。确定样品的断裂强度小于样品的断裂应变的Holloman模型预测值。取决于塑性应变发展量的空隙发展被确定为Holloman模型与断裂应力之间存在差异的主要原因。为了计算多孔区域的金属基体中的均匀应力,使用了基于Eshelby的Mori-Tanaka方法(MTM)。在金属基体中计算出的平均应力与Holloman方程的预测结果吻合良好。因此,空隙的发展解释了颈缩后应变硬化的中断。确定样品的断裂强度小于Holloman模型对样品断裂应变的预测。取决于塑性应变发展量的空隙发展被认为是造成Holloman模型与断裂应力之间差异的主要原因。为了计算多孔区域的金属基体中的均匀应力,使用了基于Eshelby的Mori-Tanaka方法(MTM)。在金属基体中计算出的平均应力与Holloman方程的预测结果吻合良好。因此,空隙的发展解释了颈缩后应变硬化的中断。确定样品的断裂强度小于Holloman模型对样品断裂应变的预测。取决于塑性应变发展量的空隙发展被认为是造成Holloman模型与断裂应力之间差异的主要原因。为了计算多孔区域的金属基体中的均匀应力,使用了基于Eshelby的Mori-Tanaka方法(MTM)。在金属基体中计算出的平均应力与Holloman方程的预测显示出良好的一致性。因此,空隙的发展解释了颈缩后应变硬化的中断。为了计算多孔区域的金属基体中的均匀应力,使用了基于Eshelby的Mori-Tanaka方法(MTM)。在金属基体中计算出的平均应力与Holloman方程的预测结果吻合良好。因此,空隙的发展解释了颈缩后应变硬化的中断。为了计算多孔区域的金属基体中的均匀应力,使用了基于Eshelby的Mori-Tanaka方法(MTM)。在金属基体中计算出的平均应力与Holloman方程的预测显示出良好的一致性。因此,空隙的发展解释了颈缩后应变硬化的中断。

更新日期:2020-09-08
down
wechat
bug