当前位置: X-MOL 学术IEEE Trans. Power Electr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Graphite Embedded High Performance Insulated Metal Substrate for Wide-bandgap Power Modules
IEEE Transactions on Power Electronics ( IF 6.7 ) Pub Date : 2021-01-01 , DOI: 10.1109/tpel.2020.3001528
Emre Gurpinar , Shajjad Chowdhury , Burak Ozpineci , Wei Fan

Emerging wide-bandgap (WBG) semiconductor devices such as silicon carbide (SiC) metal–oxide semiconductor field-effect transistors (MOSFETs) and gallium nitride high-electron-mobility transistors can handle high power in reduced semiconductor areas better than conventional Si-based devices owing to superior material properties. With increased power loss density in a WBG-based converter and reduced die size in power modules, thermal management of power devices must be optimized for high performance. This article presents a graphite-embedded insulated metal substrate (thermally-annealed-pyrolytic-graphite-embedded insulated metal substrate—IMSwTPG) designed for WBG power modules. Theoretical thermal performance analysis of graphite-embedded metal cores is presented, with design details for IMSwTPG with embedded graphite to replace a direct-bonded copper (DBC) substrate. The proposed IMSwTPG is compared with an aluminum nitride-based DBC substrate using finite-element thermal analysis for steady-state and transient thermal performance. The solutions’ thermal performances are compared under different coolant temperature and thermal loading conditions, and the proposed substrate's electrical performance is validated with static and dynamic characterization. Using graphite-embedded substrates, junction-to-case thermal resistance of SiC MOSFETs can be reduced up to 17%, and device current density can be increased by 10%, regardless of the thermal management strategy used to cool the substrate. Reduced transient thermal impedance of up to 40% of dies owing to increased heat capacity is validated in transient thermal simulations and experiments. The half-bridge power module's electrical performance is evaluated for on-state resistance, switching performance, and switching loss at three junction temperature conditions. The proposed substrate solution has minimal impact on conduction and switching performance of SiC MOSFETs.

中文翻译:

用于宽带隙功率模块的石墨嵌入式高性能绝缘金属基板

新兴的宽带隙 (WBG) 半导体器件,例如碳化硅 (SiC) 金属氧化物半导体场效应晶体管 (MOSFET) 和氮化镓高电子迁移率晶体管,可以比传统的硅基半导体器件更好地处理缩小的半导体区域中的高功率设备由于优越的材料特性。随着基于 WBG 的转换器中功率损耗密度的增加和功率模块中芯片尺寸的减小,必须优化功率器件的热管理以实现高性能。本文介绍了一种专为 WBG 功率模块设计的石墨嵌入绝缘金属基板(热退火热解石墨嵌入绝缘金属基板 - IMSwTPG)。提出了石墨嵌入金属芯的理论热性能分析,带有嵌入石墨的 IMSwTPG 的设计细节,以取代直接键合铜 (DBC) 基板。使用有限元热分析将提议的 IMSwTPG 与基于氮化铝的 DBC 衬底进行稳态和瞬态热性能的比较。在不同的冷却剂温度和热负载条件下比较了解决方案的热性能,并通过静态和动态特性验证了拟议基板的电气性能。使用嵌入石墨的衬底,无论采用何种热管理策略来冷却衬底,碳化硅 MOSFET 的结壳热阻最多可降低 17%,器件电流密度可增加 10%。在瞬态热模拟和实验中验证了由于热容量增加而导致的芯片瞬态热阻抗降低高达 40%。评估半桥电源模块在三个结温条件下的通态电阻、开关性能和开关损耗的电气性能。建议的衬底解决方案对 SiC MOSFET 的传导和开关性能​​的影响最小。
更新日期:2021-01-01
down
wechat
bug