当前位置: X-MOL 学术IEEE Microw. Mag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanoelectronic Characterization: Using Near-Field Microwave Microscopy for Nanotechnological Research
IEEE Microwave Magazine ( IF 3.6 ) Pub Date : 2020-10-01 , DOI: 10.1109/mmm.2020.3008305
Samuel Berweger , T. Mitch Wallis , Pavel Kabos

The optical characterization of nanoscale objects is challenging due to the Abbe diffraction limit. This limit constrains the achievable spatial resolution of a conventional microscope using visible light to ≈ 200 nm . 200 nm. The current era of nanotechnological research has been enabled by a host of experimental techniques that circumvent the diffraction limit. Since the Abbe limit scales proportional to the wavelength of electromagnetic radiation, the diffraction limit acts even more unfavorably on longer wavelengths. At 10 GHz (λ = 30 mm), the best achievable resolution is around 15 mm. Thus, while traditional microwave metrology enables precision broadband measurements, conventional measurement methods are insufficient to address the host of novel and exciting phenomena that arise in nanoscale systems.

中文翻译:

纳米电子表征:使用近场微波显微镜进行纳米技术研究

由于阿贝衍射极限,纳米级物体的光学表征具有挑战性。此限制将使用可见光的传统显微镜的可实现空间分辨率限制为 ≈ 200 nm。200 纳米。当前的纳米技术研究时代已经通过一系列绕过衍射极限的实验技术实现。由于阿贝极限与电磁辐射的波长成正比,衍射极限对更长的波长更不利。在 10 GHz (λ = 30 mm) 下,可实现的最佳分辨率约为 15 mm。因此,虽然传统的微波计量能够实现精确的宽带测量,但传统的测量方法不足以解决纳米级系统中出现的大量新奇和令人兴奋的现象。
更新日期:2020-10-01
down
wechat
bug