当前位置: X-MOL 学术IEEE Microw. Mag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Scanning Microwave Microscopy for Biological Applications: Introducing the State of the Art and Inverted SMM
IEEE Microwave Magazine ( IF 3.6 ) Pub Date : 2020-10-01 , DOI: 10.1109/mmm.2020.3008239
Marco Farina , James C. M. Hwang

Often, a student comes in excited by a revolutionary idea. When this happens, we invite the student to check the literature carefully and, moreover, to extend the search way back, for more than a century, in fact. For example, encouraged by Albert Einstein, Edward H. Synge introduced the concept of a near-field scanning microscope in the 1928 paper "A Suggested Method for Extending Microscopic Resolution Into the Ultramicroscopic Region" [1]. He claimed to have overcome the "...axiom in microscopy, that the only way to extend resolving power lies in the employment of light of smaller wavelength." For subwavelength resolution of a biological sample, Synge proposed to place an opaque screen with a 10-nm diameter pinhole within 10 nm of the sample (Figure 1). Light passing through the pinhole and the sample is focused on a photodetector. By moving the screen laterally in 10-nm steps, the sample is imaged with 10-nm resolution, regardless of the wavelength of the light. Later, what he proposed became known as a scanning near-field optical microscope (SNOM).

中文翻译:

用于生物应用的扫描微波显微镜:介绍最新技术和倒置 SMM

通常,学生会因一个革命性的想法而兴奋不已。当这种情况发生时,我们邀请学生仔细检查文献,而且,事实上,将搜索的方式延长到一个多世纪。例如,在阿尔伯特·爱因斯坦的鼓励下,Edward H. Synge 在 1928 年的论文“将显微分辨率扩展到超显微区域的建议方法”[1] 中介绍了近场扫描显微镜的概念。他声称已经克服了“......显微镜中的公理,扩展分辨率的唯一方法在于使用更短波长的光。” 对于生物样品的亚波长分辨率,Synge 建议在样品的 10 nm 范围内放置一个具有 10 nm 直径针孔的不透明屏幕(图 1)。穿过针孔和样品的光聚焦在光电探测器上。通过以 10 纳米的步长横向移动屏幕,无论光的波长如何,样品都能以 10 纳米的分辨率成像。后来,他提出的方案被称为扫描近场光学显微镜(SNOM)。
更新日期:2020-10-01
down
wechat
bug