当前位置: X-MOL 学术Adv. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High‐Capacity Sodium–Prussian Blue Rechargeable Battery through Chelation‐Induced Nano‐Porosity
Advanced Materials Interfaces ( IF 5.4 ) Pub Date : 2020-09-06 , DOI: 10.1002/admi.202000853
Cheryldine Qiu Xuan Lim 1, 2 , Tian Wang 1 , Evon Woan Yuann Ong 1 , Zhi‐Kuang Tan 1, 2
Affiliation  

Across the different classes of sodium‐ion battery cathodes, Prussian Blue holds the greatest promise because of its high working potentials, abundance, low‐toxicity and ease of synthesis. However, its performance as a sodium‐ion battery cathode has generally been limited to less than 120 mAh g−1, which is inferior compared to commercial lithium‐based counterparts. Here, sodium–Prussian Blue rechargeable batteries with a remarkably high discharge specific capacity of 153 ± 6 mAh g−1 at 1C is reported. This is achieved through the employment of excess ascorbic acid during the colloidal preparation of Prussian Blue crystals, followed by a 200 °C heat‐vacuum drying process. The optical, structural and thermogravimetric investigations show that the chelation of ascorbic acid to the iron ions disrupts the growth of Prussian Blue, and lead to the formation of a useful nano‐porous crystal structure. This allows for deeper percolation of sodium ions into the Prussian Blue crystals, and successfully unlocked useful inner volumes that are otherwise unreachable, thereby leading to an outstanding 47% elevation in specific capacity. This development brings sodium‐based battery technology significantly closer to the incumbent lithium‐ion batteries, and marks an important early step towards its practical application in commercial devices.

中文翻译:

通过螯合诱导的纳米孔隙率的大容量钠普鲁士蓝可充电电池

在不同种类的钠离子电池正极中,普鲁士蓝具有最大的潜力,因为它具有较高的工作潜力,含量高,毒性低且易于合成。但是,其作为钠离子电池阴极的性能通常被限制为小于120 mAh g -1,这与市售的基于锂的同类产品相比要差。在此,钠-普鲁士蓝可充电电池的放电比容量非常高,为153±6 mAh g -1据报道在1C。这是通过在普鲁士蓝晶体的胶体制备过程中使用过量的抗坏血酸,然后进行200°C的真空干燥过程来实现的。光学,结构和热重研究表明,抗坏血酸与铁离子的螯合破坏了普鲁士蓝的生长,并导致形成有用的纳米孔晶体结构。这样可以使钠离子更深地渗入普鲁士蓝晶体中,并成功释放了否则无法到达的有用内部容积,从而导致比容量显着提高47%。这项发展使基于钠的电池技术与现有的锂离子电池更加接近,并且标志着其在商业设备中的实际应用迈出了重要的第一步。
更新日期:2020-11-06
down
wechat
bug