当前位置: X-MOL 学术Mater. Today Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Boosting the safety and energy density of molybdenum disulfide/carbon nanotubes based solid-state sodium-ion supercapacitors with an ionogel electrolyte
Materials Today Energy ( IF 9.3 ) Pub Date : 2020-09-07 , DOI: 10.1016/j.mtener.2020.100527
C.X. Xing , H.T. Zhang , S.S. Pan , M. Yao , B.S. Li , Y.Q. Zhang , S.J. Zhang

Solid-state energy storage devices exhibit superior safety and energy density. However, their practical applications are still limited by the lower conductivity and ion transfer rate. The performances of sodium ion capacitors (SICs) are determined by the combination of device configuration, electrodes, and electrolyte. Therefore, the configuration optimization of solid-state SICs (SS-SICs) is critically important. Here, the fabrication of a safer high-energy-density SS-SIC is demonstrated by using flake-shaped molybdenum disulfide/carbon nanotube nanohybrids and sodium-ion ionogel electrolytes. The microstructures of nanohybrids could support shortened migration paths for sodium ions and can buffer the volume change of electrochemical reactions. Moreover, the optimized sodium-ion ionogel electrolyte was found to exhibit improved flame-retardant ability, accelerated ionic conductivity, and excellent sodium migration rate. Electrochemical analysis and molecular simulation methods of energy storage behaviors were used to uncover the origin of improved performances at higher temperatures. The optimized SS-SIC could deliver a high energy density up to 115.7 W h kg−1 at 70 °C and excellent durability with 81% retention after 8000 cycles. Therefore, a new energy supply device is provided for equipment operating at higher temperatures.



中文翻译:

使用离子凝胶电解质提高基于二硫化钼/碳纳米管的固态钠离子超级电容器的安全性和能量密度

固态储能设备具有出色的安全性和能量密度。但是,它们的实际应用仍然受到较低电导率和离子转移速率的限制。钠离子电容器(SIC)的性能取决于设备配置,电极和电解质的组合。因此,固态SIC(SS-SIC)的配置优化至关重要。在此,通过使用片状二硫化钼/碳纳米管纳米杂化物和钠离子离子凝胶电解质证明了更安全的高能量密度SS-SIC的制造。纳米杂化物的微观结构可以支持缩短的钠离子迁移路径,并可以缓冲电化学反应的体积变化。此外,发现优化的钠离子离子凝胶电解质具有改善的阻燃能力,加速的离子电导率和优异的钠迁移速率。能量存储行为的电化学分析和分子模拟方法被用来揭示高温下性能改善的根源。经过优化的SS-SIC可以提供高达115.7 W h kg的高能量密度 在70°C时为-1,具有出色的耐久性,在8000次循环后保留率达81%。因此,为在较高温度下运行的设备提供了一种新的能量供应装置。

更新日期:2020-10-02
down
wechat
bug