当前位置: X-MOL 学术Earth Planet. Sci. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The depositional flux of meteoric cosmogenic 10Be from modeling and observation
Earth and Planetary Science Letters ( IF 5.3 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.epsl.2020.116530
Kai Deng , Hella Wittmann , Friedhelm von Blanckenburg

Abstract Meteoric cosmogenic 10Be is a powerful tracer to quantify dates and rates of Earth surface processes over timescales of 103-105 yrs. A prerequisite for its applications is knowledge of the flux at which 10Be, produced in the atmosphere, is delivered to the Earth surface. Four entirely independent approaches are available to quantify this flux: 1) General Circulation Models (GCM) combined with 10Be production functions and aerosol dynamics; 2) 10Be in precipitation collections; 3) 10Be inventories in dated soil profiles; 4) riverine 10Be exported in solid and dissolved forms. We compiled and reprocessed published globally distributed 10Be flux data from each of these methods and compared them with each other after normalization to a common atmospheric production rate. Based on precipitation records, we propose a simple framework to discriminate between two delivery effects on 10Be fluxes. In the additive effect water vapor and 10Be are continuously accumulating during long-distance transport, leading to an increase in 10Be flux with precipitation rate. In the dilution effect, the 10Be flux is delivered from proximal vapor sources, limited by the rate of 10Be introduction from the stratosphere and independent of precipitation rate. Both effects are mostly present in combination, and the relative weight of either effect depends on vapor condensation rate and on the ratio of vapor condensation area to precipitation area. A comparison between precipitation-derived fluxes and GCM-derived fluxes shows that half of the precipitation estimates are >2 times greater than GCM-derived fluxes. By comparison, soil- and GCM-derived fluxes agree within a factor of 2 for more than half (∼57%) of the dataset, and the remaining soil estimates (∼43%) are much lower than GCM-derived fluxes. 71% of 10Be flux estimates from riverine export using 10Be (meteoric)/9Be ratios also agree with GCM-derived fluxes within a factor of 2. We explain the precipitation-derived fluxes that commonly exceed all other estimates by short-term stochasticity in precipitation events that might introduce a measurement time-interval bias towards higher fluxes. This bias is not present over longer-term (103-105 yrs) flux estimates like those from soil profiles. Soil-derived fluxes might still present an underestimation when retention of 10Be in soil is incomplete. We recommend producing more 10Be depositional flux data from soil inventories with full Be retention, as these generate in our view the most relevant estimates for applications of meteoric 10Be on millennial-scale Earth surface processes.

中文翻译:

来自模拟和观测的大气宇宙成因 10Be 的沉积通量

摘要 流星宇宙发生 10Be 是一种强大的示踪剂,可量化 103-105 年时间尺度上地球表面过程的日期和速率。其应用的先决条件是了解大气中产生的 10Be 输送到地球表面的通量。有四种完全独立的方法可用于量化这种通量: 1) 综合循环模型 (GCM) 结合 10Be 生产函数和气溶胶动力学;2) 10Be 在降水收集中;3) 10Be 日期土壤剖面清单;4) 河流 10Be 以固体和溶解形式出口。我们编译并重新处理了来自这些方法中的每一种的已发布的全球分布的 10Be 通量数据,并在归一化为常见的大气生产率后将它们相互比较。根据降水记录,我们提出了一个简单的框架来区分对 10Be 通量的两种传递效应。在加性效应中,水蒸气和 10Be 在长距离传输过程中不断积累,导致 10Be 通量随降水速率的增加而增加。在稀释效应中,10Be 通量从近端蒸汽源输送,受平流层 10Be 引入速率的限制,与降水速率无关。两种效应大多同时存在,两种效应的相对权重取决于蒸气冷凝率和蒸气冷凝面积与降水面积的比率。降水衍生通量与 GCM 衍生通量之间的比较表明,一半的降水估计值比 GCM 衍生通量大 2 倍以上。通过对比,对于超过一半(~57%)的数据集,土壤和 GCM 导出的通量在因子 2 内一致,其余土壤估计值(~43%)远低于 GCM 导出的通量。使用 10Be(流星)/9Be 比率从河流出口估算的 10Be 通量的 71% 也与 GCM 衍生通量一致,系数为 2。我们解释了降水衍生通量通常超过所有其他估计的降水的短期随机性可能会导致测量时间间隔偏向更高通量的事件。这种偏差在长期(103-105 年)通量估算中不存在,如来自土壤剖面的估算。当土壤中 10Be 的保留不完全时,土壤来源的通量可能仍然被低估。我们建议从具有完整 Be 保留的土壤清单中生成更多 10Be 沉积通量数据,
更新日期:2020-11-01
down
wechat
bug