当前位置: X-MOL 学术Appl. Therm. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Buoyancy-driven melting and heat transfer around a horizontal cylinder in square enclosure filled with phase change material
Applied Thermal Engineering ( IF 6.4 ) Pub Date : 2020-09-07 , DOI: 10.1016/j.applthermaleng.2020.115990
Azim Memon , Garima Mishra , Anoop K. Gupta

This work primarily focuses on designing a cost effective method yielding high rate of heat transfer from a heated object to ensure the faster melting of the phase change material (PCM). A numerical investigation has been performed on the laminar natural convection from a two-dimensional heated circular cylinder confined in a square enclosure filled with a phase change material, namely, the lauric acid. In particular, the coupled momentum and energy equations are solved to delineate the influence of the geometric position of the cylinder within the square enclosure on the melt and heat transfer characteristics of the phase change material. The solid-liquid phase change is formulated using the enthalpy–porosity technique. The detailed velocity and temperature fields are visualized in terms of velocity vectors, isotherm contours, melt fraction contours, melting rate, energy storage and surface averaged Nusselt number. The results reported herein are restricted to the six distinct geometrical positions (i.e., four symmetric and two asymmetric) of the cylinder within the enclosure. The rate of convective heat transport and hence the melt fraction is found to decrease with the increasing distance of the cylinder from the base of the enclosure. In addition, the influence of the mushy zone parameter (Amush) on the melting behaviour has also been explored. The reported numerical results for the melt fraction have been correlated as a function of the melting time and the geometric positions of the heated cylinder. Finally, one can conclude that it is possible to realize an enhanced rate of melting and energy storage simply by adjusting the location of the cylinder under confinement and thus the performance of a thermal energy storage (TES) system can remarkably be improved.



中文翻译:

由浮力驱动的融化和热传递,在一个装有相变材料的方形外壳中围绕水平圆柱体进行

这项工作主要侧重于设计一种经济高效的方法,该方法可从被加热物体产生高速率的热传递,以确保相变材料(PCM)的更快熔化。已经对二维加热的圆柱体的层流自然对流进行了数值研究,该圆柱体被限制在方形外壳中,该方形外壳中填充有相变材料,即月桂酸。特别是,求解了耦合的动量和能量方程,以描绘圆柱体在方形外壳内的几何位置对相变材料的熔体和传热特性的影响。固-液相变化是用焓-孔隙率技术来制定的。根据速度矢量,等温线轮廓,熔体馏分轮廓,熔融速率,能量存储和表面平均努塞尔数。本文报道的结果仅限于外壳内圆柱的六个不同的几何位置(即四个对称和两个不对称)。发现对流传热的速率以及因此熔体分数随圆柱体距外壳底部距离的增加而降低。此外,糊状区参数(发现对流传热的速率以及因此熔体分数随圆柱体到外壳底部距离的增加而降低。此外,糊状区参数(发现对流传热的速率以及因此熔体分数随圆柱体到外壳底部距离的增加而降低。此外,糊状区参数(一个玉米粥在熔化行为)也在不断摸索。所报告的熔融分数的数值结果已经与熔融时间和加热圆筒的几何位置相关。最后,可以得出结论,仅通过调节处于限制状态的圆柱体的位置,就可以实现提高的熔化速度和能量存储,从而可以显着改善热能存储(TES)系统的性能。

更新日期:2020-09-16
down
wechat
bug