当前位置: X-MOL 学术Ecohydrology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Standards for environmental flow verification
Ecohydrology ( IF 2.6 ) Pub Date : 2020-09-05 , DOI: 10.1002/eco.2252
Chang. S. Zhao 1, 2 , Xu. Pan 1 , Sheng. T. Yang 1 , Hua. Xiang 3 , Jin. Zhao 3 , Xin.J. Gan 3 , Su.Y. Ding 3 , Qiang. Yu 4, 5 , Yang. Yang 1
Affiliation  

Healthy river ecosystems are conducive to the sustainable use of water resources. As the climate change and human activities become more intense, the integrity of such ecosystems is seriously threatened. The maintenance of enough environmental flow (e‐flow) for river ecosystems is the most effective way of protecting river health. Accurately and reasonably estimating e‐flow is essential for river health maintenance. So far, few methods can quantitatively verify the e‐flow results calculated by various e‐flow methods, which reduces the success rate of ecological restoration projects on a global scale. Therefore, the Tennant method, wetted perimeter (WP) method, and adapted ecological hydraulic radius (AEHRA) method have been recognized by many scholars. The article used the combination of these three methods to calculate the e‐flow and its meeting rate (actual flow/e‐flow) and formed a new framework to verify e‐flow results. First, the Shannon diversity index, index of biological integrity (IBI), and river health index are used to evaluate river health status. Then, we studied the relationship between e‐flow meeting rates and three indices using field monitoring data on hydrology, water quality, and biological communities. Finally, we investigated the effects of different e‐flow calculation methods on river health. Results show that the e‐flow in the centre of the study area calculated by the Tennant and WP methods are relatively high (48.33–317 m3/s), whereas lower e‐flow (0.03–21 m3/s) are observed in its southern and northern parts. The e‐flow in the southern mountain area calculated by the AEHRA method (1.42 m3/s) is higher than those in the other regions determined by the same method. Furthermore, the highest values of river health—the Shannon diversity index (3.19), IBI (67.47), and river health index (0.65)—appear in mountainous areas that are less affected by human activities. The lowest values appear in the urban areas with river health values (0.97, 14.54, and 0.45, respectively) with high population density. For the river health scores, the values of the Shannon diversity index and IBI first increase and then decrease with the increase in the e‐flow meeting rates. The values of river health index continuously increase with the increase in the WP‐ and AEHRA‐calculated e‐flow meeting rate and fluctuate with the increase of Tennant‐calculated e‐flow meeting rate. We concluded that the adoption of WP‐ and AEHRA‐calculated e‐flow values can maintain the health of river ecosystems with a certain degree of pollution, whereas the Tennant‐calculated e‐flow can only ensure the health of river ecosystems with little pollution, the reason for which is the pollution‐affected relationships between river biota communities and stream flows, and the Tennant method uses historical stream flow records to calculate e‐flow. WP and AEHRA methods, on the other hand, do not rely on flow records. The methodologies and results can provide a scientific basis for the selection of suitable e‐flow methods and therefore facilitate the projects for ecological river restoration.

中文翻译:

环境流量验证标准

健康的河流生态系统有利于水资源的可持续利用。随着气候变化和人类活动的加剧,这类生态系统的完整性受到严重威胁。维持河流生态系统足够的环境流量(e-flow)是保护河流健康的最有效方法。准确合理地估计电子流量对于河流健康维护至关重要。到目前为止,很少有方法可以定量验证通过各种电子流方法计算出的电子流结果,这降低了全球范围内生态修复项目的成功率。因此,Tennant法,湿周法(WP)和适应的生态水力半径(AEHRA)方法已为许多学者所认可。本文使用了这三种方法的组合来计算电子流量及其满足率(实际流量/电子流量),并形成了一个验证电子流量结果的新框架。首先,使用香农多样性指数,生物完整性指数(IBI)和河流健康指数来评估河流健康状况。然后,我们使用有关水文学,水质和生物群落的现场监测数据研究了电子流满足率与三个指标之间的关系。最后,我们研究了不同的电子流量计算方法对河流健康的影响。结果表明,通过Tennant和WP方法计算出的研究区域中心的电子流相对较高(48.33–317 m 和河流健康指数用于评估河流健康状况。然后,我们使用有关水文学,水质和生物群落的现场监测数据研究了电子流满足率与三个指标之间的关系。最后,我们研究了不同的电子流量计算方法对河流健康的影响。结果表明,通过Tennant和WP方法计算出的研究区域中心的电子流相对较高(48.33–317 m 和河流健康指数用于评估河流健康状况。然后,我们使用有关水文学,水质和生物群落的现场监测数据研究了电子流满足率与三个指标之间的关系。最后,我们研究了不同的电子流量计算方法对河流健康的影响。结果表明,通过Tennant和WP方法计算出的研究区域中心的电子流相对较高(48.33–317 m3 / s),而在其南部和北部观察到较低的电子流(0.03–21 m 3 / s)。通过AEHRA方法计算的南部山区的电子流量(1.42 m 3/ s)高于通过相同方法确定的其他区域中的值。此外,在人类活动影响较小的山区,出现了最高的河流健康价值,即香农多样性指数(3.19),IBI(67.47)和河流健康指数(0.65)。最低值出现在具有较高人口密度的河流健康值(分别为0.97、14.54和0.45)的城市地区。对于河流健康得分,香农多样性指数和IBI的值先增加,然后随电子流满足率的增加而减小。河流健康指数的值随着WP和AEHRA计算的流量满足率的增加而持续增加,并随Tennant计算的流量满足率的增加而波动。我们得出的结论是,采用WP和AEHRA计算的电子流量值可以在一定程度的污染下维持河流生态系统的健康,而Tennant计算的电子流量只能确保污染很少的河流生态系统的健康,原因是河流生物区系群落与河流流量之间受污染影响的关系,而Tennant方法使用历史河流流量记录来计算电子流量。另一方面,WP和AEHRA方法不依赖流记录。这些方法和结果可以为选择合适的电子流方法提供科学依据,因此可以促进生态河流修复项目。Tennant计算的电子流量只能确保污染极少的河流生态系统的健康,其原因是河流生物群群落与河流流量之间受污染影响的关系,而Tennant方法使用历史河流流量记录来计算-流。另一方面,WP和AEHRA方法不依赖流记录。这些方法和结果可以为选择合适的电子流方法提供科学依据,从而促进生态河流修复项目。Tennant计算的电子流量只能确保污染极少的河流生态系统的健康,其原因是河流生物群群落与河流流量之间受污染影响的关系,而Tennant方法使用历史河流流量记录来计算-流。另一方面,WP和AEHRA方法不依赖流记录。这些方法和结果可以为选择合适的电子流方法提供科学依据,从而促进生态河流修复项目。
更新日期:2020-09-05
down
wechat
bug