当前位置: X-MOL 学术Mech. Syst. Signal Process. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Estimating bolt tension from vibrations: Transient features, nonlinearity, and signal processing
Mechanical Systems and Signal Processing ( IF 8.4 ) Pub Date : 2021-03-01 , DOI: 10.1016/j.ymssp.2020.107224
Marie Brøns , Jon Juel Thomsen , Si Mohamed Sah , Dmitri Tcherniak , Alexander Fidlin

Abstract Monitoring and control of tension in bolted joints is a difficult task that has received long-time attention. A newly proposed technique is to hammer-impact the bolts and estimate the tension based on the vibration response. This present work conducts a thorough experimental investigation of two different bolted structures to identify the potentials of the technique, particularly examining damping ratios and nonlinearity by appropriate signal processing. The applicability of the method is checked by conducting tests with a real multi-bolt structure. For larger tension, the squared first bending natural frequency of a bolt increases approximately linearly with bolt tension. This study investigates the sensitivity of that feature with respect to impact force, i.e. the nonlinearity in the bolt’s frequency response. The damping ratio is estimated and observed to decrease with tension, and is overall reproducible for the tested impact forces, though with significant variation for small bolt tension. A time–frequency analysis provides insights into the variations observed in the measured linear damping ratios and natural frequencies. The time-dependent damping ratios generally depend on acceleration amplitude, especially for small amplitudes and small bolt tension. In contrast, the instantaneous natural frequencies are found to be practically independent of amplitude. The absence of significant nonlinearity is encouraging for the potential of a hammer impact-based technique for estimating bolt tension.

中文翻译:

从振动估计螺栓张力:瞬态特征、非线性和信号处理

摘要 螺栓接头张力的监测与控制是一项长期受到关注的艰巨任务。一种新提出的技术是锤击螺栓并根据振动响应估计张力。目前的工作对两种不同的螺栓结构进行了彻底的实验研究,以确定该技术的潜力,特别是通过适当的信号处理来检查阻尼比和非线性。通过使用真实的多螺栓结构进行测试来检查该方法的适用性。对于更大的张力,螺栓的第一弯曲固有频率的平方与螺栓张力近似线性增加。本研究调查了该特征对冲击力的敏感性,即螺栓频率响应的非线性。阻尼比被估计并观察到随着张力而降低,并且对于测试的冲击力来说总体上是可重现的,尽管对于小螺栓张力有显着的变化。时频分析可以深入了解在测量的线性阻尼比和自然频率中观察到的变化。瞬态阻尼比通常取决于加速度振幅,特别是对于小振幅和小螺栓张力。相反,发现瞬时固有频率实际上与振幅无关。没有显着的非线性是令人鼓舞的基于锤击冲击的技术估计螺栓张力的潜力。时频分析可以深入了解在测量的线性阻尼比和自然频率中观察到的变化。瞬态阻尼比通常取决于加速度振幅,特别是对于小振幅和小螺栓张力。相反,发现瞬时固有频率实际上与振幅无关。没有显着的非线性是令人鼓舞的基于锤击冲击的技术估计螺栓张力的潜力。时频分析可以深入了解在测量的线性阻尼比和自然频率中观察到的变化。瞬态阻尼比通常取决于加速度振幅,特别是对于小振幅和小螺栓张力。相反,发现瞬时固有频率实际上与振幅无关。没有显着的非线性是令人鼓舞的基于锤击冲击的技术估计螺栓张力的潜力。发现瞬时自然频率实际上与振幅无关。没有显着的非线性是令人鼓舞的基于锤击冲击的技术估计螺栓张力的潜力。发现瞬时自然频率实际上与振幅无关。没有显着的非线性是令人鼓舞的基于锤击冲击的技术估计螺栓张力的潜力。
更新日期:2021-03-01
down
wechat
bug