当前位置: X-MOL 学术Energy Storage Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Safe, superionic conductive and flexible “polymer-in-plastic salts” electrolytes for dendrite-free lithium metal batteries
Energy Storage Materials ( IF 20.4 ) Pub Date : 2020-09-05 , DOI: 10.1016/j.ensm.2020.09.003
Zhu Liao , Jun Huang , Wenting Chen , Nagahiro Saito , Zhengxi Zhang , Li Yang , Shin-ichi Hirano

Solid polymer electrolytes (SPEs) garner tremendous attention for both enabling higher energy density battery chemistry and alleviating the safety concerns of liquid electrolytes, but the practical utilizations of SPEs are severely hindered by the limited room temperature ionic conductivity, low transference number and huge interface impedance. Unlike the polymer chain movement in traditional SPEs, in the present work, we develop novel “polymer-in-plastic salts” electrolytes (PIPSEs) via a high weight ratio of plastic salts to polymer in which polymer just function as framework so that non-flammable, superionic conductive and flexible SPEs can be obtained. Also, the high content of plastic salts in PIPSEs can wet electrodes and form compatible solid electrolyte interface (SEI) with lithium metal. As a consequence, solid-state dendrite-free symmetric Li cells with PIPSEs show ultralong cycle life over 1000 h under up to 2.0 mA cm−2 and Li/LiFePO4 and high-voltage Li/LiNi0.6Co0.2Mn0.2O2 cells utilizing above PIPSEs exhibit excellent cycle performance and appealing rate performance. It is anticipated that our work provides a new strategy for the next-generation solid-state batteries.



中文翻译:

用于无枝晶的锂金属电池的安全,超离子导电性和柔性“塑料盐聚合物”电解质

固态聚合物电解质(SPE)在实现更高能量密度的电池化学性质和减轻液体电解质的安全性方面都倍受关注,但由于室温离子电导率有限,转移数低和界面阻抗大,严重阻碍了SPE的实际应用。与传统SPE中的聚合物链运动不同,在当前工作中,我们通过以塑料盐与聚合物的高重量比(其中聚合物仅用作骨架)来开发新型的“塑料盐聚合物”电解质(PIPSE)。可获得易燃,超离子导电和柔性的SPE。同样,PIPSE中的高含量塑料盐会润湿电极,并与锂金属形成相容的固体电解质界面(SEI)。作为结果,利用上述PIPSE的-2和Li / LiFePO 4以及高压Li / LiNi 0.6 Co 0.2 Mn 0.2 O 2电池表现出优异的循环性能和吸引人的性能。可以预期,我们的工作将为下一代固态电池提供新的策略。

更新日期:2020-09-11
down
wechat
bug