当前位置: X-MOL 学术Front Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Tuning the electronic properties of hydrogen passivated C 3 N nanoribbons through van der Waals stacking
Frontiers of Physics ( IF 7.5 ) Pub Date : 2020-09-05 , DOI: 10.1007/s11467-020-0982-4
Jia Liu , Xian Liao , Jiayu Liang , Mingchao Wang , Qinghong Yuan

The two-dimensional (2D) C3N has emerged as a material with promising applications in high performance device owing to its intrinsic bandgap and tunable electronic properties. Although there are several reports about the bandgap tuning of C3N via stacking or forming nanoribbon, bandgap modulation of bilayer C3N nanoribbons (C3NNRs) with various edge structures is still far from well understood. Here, based on extensive first-principles calculations, we demonstrated the effective bandgap engineering of C3N by cutting it into hydrogen passivated C3NNRs and stacking them into bilayer het-erostructures. It was found that armchair (AC) C3NNRs with three types of edge structures are all semiconductors, while only zigzag (ZZ) C3NNRs with edges composed of both C and N atoms (ZZ-CN/CN) are semiconductors. The bandgaps of all semiconducting C3NNRs are larger than that of C3N nanosheet. More interestingly, AC-C3NNRs with CN/CN edges (AC-CN/CN) possess direct bandgap while ZZ-CN/CN have indirect bandgap. Compared with the monolayer C3NNR, the bandgaps of bilayer C3NNRs can be greatly modulated via different stacking orders and edge structures, varying from 0.43 eV for ZZ-CN/CN with AB’-stacking to 0.04 eV for AC-CN/CN with AA-stacking. Particularly, transition from direct to indirect bandgap was observed in the bilayer AC-CN/CN heterostructure with AA’-stacking, and the indirect-to-direct transition was found in the bilayer ZZ-CN/CN with AB-stacking. This work provides insights into the effective bandgap engineering of C3N and offers a new opportunity for its applications in nano-electronics and optoelectronic devices.

中文翻译:

通过范德华堆叠调整氢钝化的C 3 N纳米带的电子性质

二维(2D)C 3 N由于其固有的带隙和可调节的电子特性,已成为在高性能器件中具有广阔应用前景的材料。尽管有几篇有关通过堆叠或形成纳米带对C 3 N进行带隙调节的报道,但对具有各种边缘结构的双层C 3 N纳米带(C 3 NNR)的带隙调制的了解仍很远。在这里,基于大量的第一性原理计算,我们通过将C 3 N切成氢钝化的C 3 NNRs并将其堆叠成双层异质结构,证明了其有效的带隙工程。发现扶手椅(AC)C 3具有三种边缘结构的NNR都是半导体,而只有具有由C和N原子组成的边缘的Z字形(ZZ)C 3 NNR(ZZ-CN / CN)是半导体。所有半导体C 3 NNR的带隙均大于C 3 N纳米片的带隙。更有趣的是,具有CN / CN边缘(AC-CN / CN)的AC-C 3 NNR具有直接带隙,而ZZ-CN / CN具有间接带隙。与单层C 3 NNR相比,双层C 3的带隙NNR可以通过不同的堆叠顺序和边缘结构进行很大的调制,范围从具有AB'堆叠的ZZ-CN / CN的0.43 eV到具有AA堆叠的AC-CN / CN的0.04 eV不等。特别地,在具有AA'堆叠的双层AC-CN / CN异质结构中观察到从直接带隙到间接带隙的转变,并且在具有AB堆叠的双层ZZ-CN / CN中发现了间接至直接的转变。这项工作为C 3 N的有效带隙工程研究提供了见识,并为其在纳米电子和光电子器件中的应用提供了新的机会。
更新日期:2020-09-05
down
wechat
bug