当前位置: X-MOL 学术IEEE Trans. Netw. Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimal Task Allocation in Vehicular Fog Networks Requiring URLLC: An Energy-Aware Perspective
IEEE Transactions on Network Science and Engineering ( IF 6.6 ) Pub Date : 2020-07-01 , DOI: 10.1109/tnse.2019.2955474
Tingting Liu , Jun Li , Feng Shu , Zhu Han

In order to make intelligent transportation systems (ITSs) come true, execution of a large amount of data needs to be migrated from the cloud centers to the edge nodes, especially in the scenarios requiring ultra reliable low latency communications (URLLC). In this article, we propose to study the energy-aware task allocation problem in the vehicular fog networks considering URLLC. Specifically, a requester who has some bursty computation tasks which cannot be finished within a required time by itself, needs to decide whether the nearby computation nodes can meet the latency and reliability requirements, and which nodes should be chosen. Given the required latency and reliability, the maximum computation capacity of each fog node is first calculated based on the martingale-theory-derived delay bound. Then, if the available fog nodes can accommodate the computation tasks, two different optimization problems concerning the energy efficiency maximization and the energy consumption minimization are constructed further. The corresponding solutions are also provided. Specifically, the optimal solution in maximizing the energy efficiency is not unique, while the optimal solution in minimizing the energy consumption is unique. Moreover, the latter solution is provided as a truncated-channel-inversion like policy. At last, numerical results are illustrated to demonstrate effectiveness of the proposed optimal task allocation schemes from the perspectives of the energy efficiency and the energy consumption.

中文翻译:

需要 URLLC 的车载雾网络中的最佳任务分配:能量感知视角

为了实现智能交通系统(ITS),大量数据的执行需要从云中心迁移到边缘节点,尤其是在需要超可靠低延迟通信(URLLC)的场景中。在本文中,我们建议研究考虑 URLLC 的车辆雾网络中的能量感知任务分配问题。具体来说,请求者有一些突发性的计算任务无法在规定时间内完成,需要决定附近的计算节点是否能够满足延迟和可靠性要求,以及应该选择哪些节点。给定所需的延迟和可靠性,首先根据鞅理论推导的延迟界限计算每个雾节点的最大计算能力。然后,如果可用的雾节点可以容纳计算任务,则进一步构建关于能源效率最大化和能源消耗最小化的两个不同的优化问题。还提供了相应的解决方案。具体来说,最大化能效的最优解不是唯一的,而最小化能量消耗的最优解是唯一的。此外,后一种解决方案是作为类似策略的截断通道反转提供的。最后,通过数值结果从能源效率和能源消耗的角度证明了所提出的最优任务分配方案的有效性。进一步构建了关于能源效率最大化和能源消耗最小化的两个不同的优化问题。还提供了相应的解决方案。具体来说,最大化能效的最优解不是唯一的,而最小化能量消耗的最优解是唯一的。此外,后一种解决方案是作为类似策略的截断通道反转提供的。最后,通过数值结果从能源效率和能源消耗的角度证明了所提出的最优任务分配方案的有效性。进一步构建了关于能源效率最大化和能源消耗最小化的两个不同的优化问题。还提供了相应的解决方案。具体来说,最大化能效的最优解不是唯一的,而最小化能量消耗的最优解是唯一的。此外,后一种解决方案是作为类似策略的截断通道反转提供的。最后,通过数值结果从能源效率和能源消耗的角度证明了所提出的最优任务分配方案的有效性。此外,后一种解决方案是作为类似策略的截断通道反转提供的。最后,通过数值结果从能源效率和能源消耗的角度证明了所提出的最优任务分配方案的有效性。此外,后一种解决方案被提供为类似策略的截断通道反转。最后,通过数值结果从能源效率和能源消耗的角度证明了所提出的最优任务分配方案的有效性。
更新日期:2020-07-01
down
wechat
bug