当前位置: X-MOL 学术bioRxiv. Bioeng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Subcutaneous nanotherapy repurposes the immunosuppressive mechanism of rapamycin to enhance allogeneic islet graft viability
bioRxiv - Bioengineering Pub Date : 2020-10-06 , DOI: 10.1101/2020.09.03.281923
Jacqueline Burke , Xiaomin Zhang , Sharan Bobbala , Molly Frey , Carolina Fuentes , Helena Haddad , Sean Allen , Reese Richardson , Guillermo Ameer , Evan A Scott

Rapamycin is an orally administered immunosuppressant that is plagued by poor bioavailability and a wide biodistribution. Thus, this pleotropic mTOR inhibitor has a narrow therapeutic window, a wide range of side effects and provides inadequate transplantation protection. Here, we demonstrate that subcutaneous rapamycin delivery via poly(ethylene glycol)-b-poly(propylene sulfide)) (PEG-b-PPS) polymersome (PS) nanocarriers modulates the cellular biodistribution of rapamycin to change its immunosuppressive mechanism of action for enhanced efficacy while minimizing side effects. While oral rapamycin inhibits naive T cell proliferation directly, subcutaneously administered rapamycin-loaded polymersomes (rPS) instead modulated Ly-6Clow monocytes and tolerogenic semi-mature dendritic cells, with immunosuppression mediated by CD8+ Tregs and rare CD4+CD8+ double-positive T cells. As PEG-b-PPS PS are uniquely non-inflammatory, background immunostimulation from the vehicle was avoided, allowing immunomodulation to be primarily attributed to the cellular biodistribution of rapamycin. Repurposing mTOR inhibition significantly improved maintenance of normoglycemia in a clinically relevant, MHC-mismatched, allogeneic, intraportal (liver) islet transplantation model. These results demonstrate the ability of engineered nanocarriers to repurpose drugs for alternate routes of administration by rationally controlling cellular biodistribution.

中文翻译:

皮下纳米疗法改变了雷帕霉素的免疫抑制机制,以增强同种异体胰岛移植物的生存能力

雷帕霉素是口服给药的免疫抑制剂,由于其生物利用度差和生物分布广泛而受到困扰。因此,该多效性mTOR抑制剂具有狭窄的治疗窗口,广泛的副作用并且提供了不足的移植保护。在这里,我们证明皮下雷帕霉素通过聚(乙二醇)-b-聚(丙烯硫醚)(PEG-b-PPS)聚合体(PS)纳米载体的传递可调节雷帕霉素的细胞生物分布,从而改变其免疫抑制作用机制,从而增强功效,同时最大程度减少副作用。口服雷帕霉素可直接抑制幼稚T细胞增殖,而皮下注射雷帕霉素负载的聚合物小体(rPS)则可调节Ly-6Clow单核细胞和耐受性半成熟树突状细胞,CD8 + Treg和稀有CD4 + CD8 +双阳性T细胞介导的免疫抑制。由于PEG-b-PPS PS具有独特的非炎症性,因此避免了来自媒介物的背景免疫刺激,从而使免疫调节主要归因于雷帕霉素的细胞生物分布。在临床相关的,MHC不匹配,同种异体,门静脉内(肝)胰岛移植模型中,重新采用mTOR抑制作用可显着改善正常血糖的维持。这些结果证明了工程化的纳米载体通过合理控制细胞的生物分布,将药物重新用于替代给药途径的能力。使得免疫调节主要归因于雷帕霉素的细胞生物分布。在临床相关的,MHC不匹配的同种异体,门静脉内(肝)胰岛移植模型中,重新采用mTOR抑制作用可显着改善正常血糖的维持。这些结果证明了工程化的纳米载体通过合理控制细胞的生物分布,将药物重新用于替代给药途径的能力。使得免疫调节主要归因于雷帕霉素的细胞生物分布。在临床相关的,MHC不匹配的同种异体,门静脉内(肝)胰岛移植模型中,重新采用mTOR抑制作用可显着改善正常血糖的维持。这些结果证明了工程化的纳米载体通过合理控制细胞的生物分布,将药物重新用于替代给药途径的能力。
更新日期:2020-10-07
down
wechat
bug