当前位置: X-MOL 学术Mech. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Micro-scale computational modeling of graphene-based nanocomposites – Influence of filler-matrix interface failure
Mechanics of Materials ( IF 3.9 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.mechmat.2020.103584
Ebrahim Sadeghpour , Yangbo Guo , Daniel Chua , Victor P.W. Shim

Abstract The effect of failure at the filler-matrix interface on the tensile stress-strain response of graphene-based polymer nanocomposites is studied using micro-scale finite element (FE) modeling. Interfacial failure can occur in the form of debonding or slip. Based on previous studies ( Jiang et al., 2014 ; Anagnostopoulos et al., 2015 ; Li et al., 2017 ), interfacial slip, which causes friction-like interaction between the filler and matrix, is identified as the major failure mechanism that affects the nanocomposite response. By establishing single-filler models in ABAQUS, it is demonstrated that interfacial slip affects the stress-strain response of the nanocomposite in two ways. Firstly, it limits the load that can be transferred to the filler. Secondly, it causes a shear displacement discontinuity across the interface, and this generates additional strain over and above those of the matrix and filler; this reduces the level of stress enhancement in the nanocomposite that the incorporation of fillers contribute, and under certain conditions, even weaken the nanocomposite. Models with fully aligned and randomly oriented fillers are also established to examine the influence of parameters such as filler orientation, interfacial slip strength, and filler aspect ratio, on the tensile response of the nanocomposite. The model developed is employed to describe the tensile response of an actual polyvinyl alcohol (PVA)- graphene oxide (GO) nanocomposite, and good correlation with experiments is observed.

中文翻译:

石墨烯基纳米复合材料的微尺度计算建模——填料-基质界面失效的影响

摘要 使用微尺度有限元 (FE) 建模研究了填料-基质界面处的失效对石墨烯基聚合物纳米复合材料的拉伸应力-应变响应的影响。界面失效可能以脱粘或滑移的形式发生。根据之前的研究(Jiang et al., 2014 ; Anagnostopoulos et al., 2015 ; Li et al., 2017 ),导致填料和基体之间摩擦式相互作用的界面滑移被确定为主要失效机制影响纳米复合材料的响应。通过在 ABAQUS 中建立单填料模型,证明界面滑移以两种方式影响纳米复合材料的应力应变响应。首先,它限制了可以转移到填料上的载荷。其次,它会导致跨界面的剪切位移不连续性,这会产生超出基体和填料应变的额外应变;这降低了纳米复合材料中因加入填料而导致的应力增强水平,并且在某些条件下甚至削弱了纳米复合材料。还建立了具有完全对齐和随机取向的填料的模型,以检查诸如填料取向、界面滑移强度和填料纵横比等参数对纳米复合材料拉伸响应的影响。开发的模型用于描述实际聚乙烯醇 (PVA)-氧化石墨烯 (GO) 纳米复合材料的拉伸响应,并观察到与实验的良好相关性。这降低了纳米复合材料中因加入填料而导致的应力增强水平,并且在某些条件下甚至削弱了纳米复合材料。还建立了具有完全对齐和随机取向的填料的模型,以检查诸如填料取向、界面滑移强度和填料纵横比等参数对纳米复合材料拉伸响应的影响。开发的模型用于描述实际聚乙烯醇 (PVA)-氧化石墨烯 (GO) 纳米复合材料的拉伸响应,并观察到与实验的良好相关性。这降低了纳米复合材料中因加入填料而导致的应力增强水平,并且在某些条件下甚至削弱了纳米复合材料。还建立了具有完全对齐和随机取向的填料的模型,以检查诸如填料取向、界面滑移强度和填料纵横比等参数对纳米复合材料拉伸响应的影响。开发的模型用于描述实际聚乙烯醇 (PVA)-氧化石墨烯 (GO) 纳米复合材料的拉伸响应,并观察到与实验的良好相关性。和填料纵横比,对纳米复合材料的拉伸响应。开发的模型用于描述实际聚乙烯醇 (PVA)-氧化石墨烯 (GO) 纳米复合材料的拉伸响应,并观察到与实验的良好相关性。和填料纵横比,对纳米复合材料的拉伸响应。开发的模型用于描述实际聚乙烯醇 (PVA)-氧化石墨烯 (GO) 纳米复合材料的拉伸响应,并观察到与实验的良好相关性。
更新日期:2020-11-01
down
wechat
bug