当前位置: X-MOL 学术Int. J. Eng. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling and simulating the effects of a general imperfect interface in fibrous piezoelectric composites
International Journal of Engineering Science ( IF 6.6 ) Pub Date : 2020-09-04 , DOI: 10.1016/j.ijengsci.2020.103379
J.-T. Liu , Y. Xu , Q.C. He

Interfacial behavior within fibrous piezoelectric composites (PZCs) may dramatically degrade the overall electromechanical performance and simultaneously vary the effective coupling moduli of these intelligent materials. In the present paper, we first recapitulate a physics-based general interfacial relation, which is rigorously derived from an ideal three-phase configuration and thus owns explicit physical meaning, to characterize this behavior between two different piezoelectric media. Afterwards, the explicit strong and weak governing equations of fibrous PZC boundary value problems (BVPs) are constructed, and a computational approach is then developed with the help of the extended finite element method (XFEM) to account for the discontinuities within both the primary (i.e., the electric potential and displacement fields) and the secondary fields (i.e., the normal electric displacement and normal traction fields). To achieve a benchmark problem with analytical exact solution, a simplified general interfacial relation is introduced, and a fibrous PZC BVP involving a cylindrical simplified general interface is designated and analytically solved. Hereafter, the convergence performance and validity of the elaborated computational approach are tested in detail. Eventually, discussions are further made on the influence of material composition and inhomogeneity shapes on the electroelastic coupling behavior of PZCs, and a few concluding remarks are drawn.



中文翻译:

建模和模拟一般不完美界面在纤维压电复合材料中的作用

纤维压电复合材料(PZC)内的界面行为可能会大大降低整体机电性能,并同时改变这些智能材料的有效耦合模量。在本文中,我们首先概括了基于物理学的一般界面关系,该关系严格地源自理想的三相配置,因此具有明确的物理含义,以表征两种不同压电介质之间的这种行为。然后,构造了纤维状PZC边值问题(BVP)的显式强控制方程和弱控制方程,然后借助扩展有限元方法(XFEM)开发了一种计算方法,以解决两个主要区域(即 电势和位移场)和次级场(即法向电位移和法向牵引场)。为了用解析精确解实现基准问题,引入了简化的一般界面关系,并指定并解析了涉及圆柱简化的一般界面的纤维状PZC BVP。此后,将详细测试详细计算方法的收敛性能和有效性。最后,进一步讨论了材料组成和不均匀形状对PZCs电弹性耦合行为的影响,并作了一些总结性的评论。介绍了一种简化的一般界面关系,并指定并解析了涉及圆柱形简化一般界面的纤维状PZC BVP。此后,将详细测试详细计算方法的收敛性能和有效性。最终,进一步讨论了材料组成和不均匀形状对PZCs电弹性耦合行为的影响,并作了一些总结性的评论。介绍了一种简化的一般界面关系,并指定并解析了涉及圆柱形简化一般界面的纤维状PZC BVP。此后,将详细测试详细计算方法的收敛性能和有效性。最后,进一步讨论了材料组成和不均匀形状对PZCs电弹性耦合行为的影响,并作了一些总结性的评论。

更新日期:2020-09-04
down
wechat
bug