当前位置: X-MOL 学术Geochim. Cosmochim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
First-principles computation of diffusional Mg isotope fractionation in silicate melts
Geochimica et Cosmochimica Acta ( IF 5 ) Pub Date : 2020-12-01 , DOI: 10.1016/j.gca.2020.08.028
Haiyang Luo , Bijaya B. Karki , Dipta B. Ghosh , Huiming Bao

Abstract Diffusional isotope fractionation occurs in geochemical processes (such as magma mixing, bubble growth, and crystal growth), even at magmatic temperatures. Isotopic mass dependence of diffusion is commonly expressed as D i D j = m j m i β , where D i and D j are diffusion coefficients of two isotopes whose masses are m i and m j . How the dimensionless empirical parameter β depends on temperature, pressure, and composition remains poorly constrained. Here, we conducted a series of first-principles molecular dynamics simulations to evaluate the β factor of Mg isotopes in MgSiO3 and Mg2SiO4 melts using pseudo-isotope method. In particular, we considered interactions between Mg isotopes by simultaneously putting pseudo-mass and normal-mass Mg atoms in a simulation supercell. The calculated β for Mg isotopes decreases linearly with decreasing temperature at zero pressure, from 0.158 ± 0.004 at 4000 K to 0.121 ± 0.017 at 2200 K for MgSiO3 melt and from 0.150 ± 0.004 at 4000 K to 0.101 ± 0.012 at 2200 K for Mg2SiO4 melt. Moreover, our simulations of compressed Mg2SiO4 melt along the 3000 K isotherm show that the β value decreases linearly from 0.130 ± 0.006 at 0 GPa to 0.060 ± 0.011 at 17 GPa. Based on our diffusivity results, the empirically established positive correlation between β and solvent-normalized diffusivity (Di/DSi) seems to be applicable only at constant temperatures or in narrow temperature ranges. Analysis of atomistic mechanisms suggests that the calculated β values are inversely correlated with force constants of Mg at a given temperature or pressure. Good agreement between our first principles results with available experimental data suggests that interactions between isotopes of major elements must be considered in calculating β for major elements in silicate melts. Also, we discuss diffusion-controlled crystal growth by considering our calculated β values.

中文翻译:

硅酸盐熔体中扩散镁同位素分馏的第一性原理计算

摘要 扩散同位素分馏发生在地球化学过程(如岩浆混合、气泡生长和晶体生长)中,即使在岩浆温度下也是如此。扩散的同位素质量依赖性通常表示为 D i D j = mjmi β ,其中 D i 和 D j 是质量为 mi 和 mj 的两种同位素的扩散系数。无量纲经验参数 β 如何依赖于温度、压力和成分仍然没有很好的约束。在这里,我们进行了一系列第一性原理分子动力学模拟,以使用拟同位素方法评估 MgSiO3 和 Mg2SiO4 熔体中 Mg 同位素的 β 因子。特别是,我们通过同时将伪质量和正常质量的 Mg 原子放入模拟超胞中来考虑 Mg 同位素之间的相互作用。计算出的 Mg 同位素 β 在零压力下随着温度的降低而线性降低,从 4000 K 下的 0.158 ± 0.004 到 2200 K 下 Mg SiO3 熔体的 0.121 ± 0.017 和 4000 K 下 0.150 ± 0.004 到 0.150 ± 0.004 到 0.150 ± 0.004 到 0.150 ± 0.004 到 0.1202 K SiO22 Mg 熔体. 此外,我们对压缩 Mg2SiO4 熔体沿 3000 K 等温线的模拟表明,β 值从 0 GPa 时的 0.130 ± 0.006 线性降低到 17 GPa 时的 0.060 ± 0.011。根据我们的扩散率结果,β 和溶剂归一化扩散率 (Di/DSi) 之间的经验建立的正相关似乎仅适用于恒定温度或窄温度范围。对原子机制的分析表明,计算出的 β 值与给定温度或压力下 Mg 的力常数成反比。我们的第一性原理结果与可用实验数据之间的良好一致性表明,在计算硅酸盐熔体中主要元素的 β 时必须考虑主要元素同位素之间的相互作用。此外,我们通过考虑我们计算的 β 值来讨论扩散控制的晶体生长。
更新日期:2020-12-01
down
wechat
bug