当前位置: X-MOL 学术Comp. Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Revert stable p-type ZnO with LimN complex co-doping from the first-principles study
Computational Materials Science ( IF 3.3 ) Pub Date : 2021-01-01 , DOI: 10.1016/j.commatsci.2020.109894
Xiaowei Huang , Liangliang Liu , Zaiping Zeng , Yu Jia , Zuliang Du

Abstract Although lithium-nitrogen dual acceptor (LimN) co-doping has been experimentally applied successfully for the realization of p-type conductibility in bulk ZnO, the observed p-type conductivity usually suffers instability issues. In this contribution, we have employed first-principles method within the framework of density functional theory to explore the driving mechanism of p-type conductivity in LimN-doped ZnO with an emphasis on the lithium concentration (i.e., m = 1–4). Through examining the formation energy of different doping configurations and corresponding band structures, we find that Li2N complex doping (i.e., with a Li interstitial bound to a Li-N dual-acceptor co-doping center) is responsible for the p-type conductivity. However, such a complex is energetically meta-stable. Excess Li-interstitial in bulk ZnO sample could easily cross the energy barrier (~0.39 eV) and bind to the Li2N doping center, and form a stable but neutral Li3N cluster, causing the disappearance of p-type conductivity. This therefore explains the experimental instability phenomenon observed in the (Li, N)-doped ZnO. This work can be interesting and useful for designing electronic and optoelectronic devices based on p-type ZnO.

中文翻译:

从第一性原理研究中恢复具有 LimN 复合物共掺杂的稳定 p 型 ZnO

摘要 尽管锂氮双受主 (LimN) 共掺杂已在实验上成功应用于实现块体 ZnO 中的 p 型导电性,但观察到的 p 型导电性通常存在不稳定性问题。在这个贡献中,我们在密度泛函理论的框架内采用第一性原理方法来探索 LimN 掺杂的 ZnO 中 p 型电导率的驱动机制,重点是锂浓度(即 m = 1-4)。通过检查不同掺杂配置和相应能带结构的形成能,我们发现 Li2N 复合掺杂(即,Li 间隙绑定到 Li-N 双受体共掺杂中心)是 p 型导电性的原因。然而,这种复合体在能量上是亚稳态的。块状 ZnO 样品中过量的 Li 间隙很容易穿过能垒(~0.39 eV)并与 Li2N 掺杂中心结合,形成稳定但中性的 Li3N 簇,导致 p 型导电性消失。因此,这解释了在 (Li, N) 掺杂的 ZnO 中观察到的实验不稳定现象。这项工作对于设计基于 p 型 ZnO 的电子和光电器件非常有趣和有用。
更新日期:2021-01-01
down
wechat
bug