当前位置: X-MOL 学术J. Mater. Chem. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Highly thermally conductive and flexible phase change composites enabled by polymer/graphite nanoplatelet-based dual networks for efficient thermal management
Journal of Materials Chemistry A ( IF 11.9 ) Pub Date : 2020-09-03 , DOI: 10.1039/d0ta05904h
Si Wu 1, 2, 3, 4 , Tingxian Li 1, 2, 3, 4 , Minqiang Wu 1, 2, 3, 4 , Jiaxing Xu 1, 2, 3, 4 , Yihao Hu 1, 2, 3, 4 , Jingwei Chao 1, 2, 3, 4 , Taisen Yan 1, 2, 3, 4 , Ruzhu Wang 1, 2, 3, 4
Affiliation  

Phase change materials (PCMs) have been widely used for passive thermal management and energy storage due to the high latent heat capacity near phase transition points. However, the low thermal conductivity and leakage issue are two long-standing bottlenecks in PCM-based heat-related applications. Although the state of the art can address one or both of these issues by synthesizing phase change composites (PCCs), it remains challenging to achieve high-performance PCCs with simultaneously superior thermal and mechanical properties and phase change behaviors. In this work, a new method is reported to prepare highly thermally conductive, flexible and leakage-proof PCCs by constructing dual polymer and graphite nanoplatelet networks as the functional matrix of PCMs. In the composites, paraffin wax serves as the PCM, the macromolecular olefin block copolymer (OBC) forms a cross-linked polymer network to enclose the molten PCM and endow the composite film with flexibility, and expanded graphite (EG) with a long-chain structure forms an aligned and interconnected graphite nanoplatelet percolation network to enable the high thermal conductivity of PCCs. The radial thermal conductivities reach 4.2–32.8 W m−1 K−1 at EG loadings of 5–40 wt%. The resultant flexible composite film shows efficient and reliable thermal management performance by lowering the working temperature of a commercial lithium-ion battery by more than 12 °C at high discharge rates. Our work provides an efficient and cost-effective route to synthesizing high-performance PCCs for various heat-related applications including the thermal harvesting of renewable energy, building energy management, thermal management of electronics, etc.

中文翻译:

高导热性和柔性相变复合材料,通过基于聚合物/石墨纳米片的双重网络实现高效热管理

由于相变点附近的高潜热容量,相变材料(PCM)已被广泛用于被动式热管理和能量存储。但是,低热导率和泄漏问题是基于PCM的热相关应用中的两个长期存在的瓶颈。尽管现有技术可以通过合成相变复合材料(PCC)来解决这些问题中的一个或两个,但要获得同时具有出色的热和机械性能以及相变行为的高性能PCC,仍然是一项挑战。在这项工作中,报道了一种新方法,该方法通过构建双聚合物和石墨纳米片状网络作为PCM的功能基质来制备高导热,柔性和防漏PCC。在复合材料中,石蜡用作PCM,大分子烯烃嵌段共聚物(OBC)形成交联的聚合物网络以包围熔融的PCM并赋予复合膜以柔韧性,而具有长链结构的膨胀石墨(EG)则形成排列整齐且相互连接的石墨纳米薄片渗滤网络,实现PCC的高导热性。径向热导率达到4.2–32.8 W mEG含量为5-40 wt%时, -1 K -1。通过以高放电速率将商用锂离子电池的工作温度降低超过12°C,所得的柔性复合膜显示出有效而可靠的热管理性能。我们的工作为合成与各种热相关应用的高性能PCC提供了一种有效且具有成本效益的途径,包括可再生能源的热收集,建筑能源管理,电子设备的热管理等。
更新日期:2020-10-06
down
wechat
bug