当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Innovative design of bismuth-telluride-based thermoelectric micro-generators with high output power
Energy & Environmental Science ( IF 32.5 ) Pub Date : 2020-09-03 , DOI: 10.1039/d0ee02579h
Soufiane El Oualid 1, 2, 3, 4, 5 , Francis Kosior 1, 2, 3, 4, 5 , Anne Dauscher 1, 2, 3, 4, 5 , Christophe Candolfi 1, 2, 3, 4, 5 , Gerhard Span 6, 7, 8 , Ervin Mehmedovic 6, 7, 8 , Janina Paris 6, 7, 8 , Bertrand Lenoir 1, 2, 3, 4, 5
Affiliation  

The ever-increasing number of connected objects requires novel ways to power them and make them fully autonomous. In this context, photovoltaic, piezoelectric or thermoelectric energy-harvesting technologies show great promises as they make possible the conversion of solar radiation, motion or thermal energy into useful electricity for charging micro-batteries for instance. Thermoelectric micro-generators (μ-TEGs) exhibit several key benefits, making them prime candidates for harvesting any temperature difference between their two exchange surfaces. However, their output power critically depends on the design of the μ-TEG, the minimization of the detrimental influence of the contact resistances and on the coupling of the μ-TEG with the heat source and heat sink. Here, we theoretically and experimentally demonstrate how these inherent difficulties can be mitigated using an innovative flexible μ-TEG design based on bismuth telluride thin films. Our experimental results show that an output power of 5.5 μW per thermocouple can be generated under a temperature difference of only 5 K, in excellent agreement with predictions based on three-dimensional finite element analyses. These remarkable results rank our μ-TEG among the best micro-generators currently available.

中文翻译:

高输出功率的基于碲化铋的热电微型发电机的创新设计

不断增加的连接对象数量需要新颖的方法来为其供电并使其完全自治。在这种情况下,光伏,压电或热电能量收集技术显示出巨大的希望,因为它们使将太阳辐射,运动或热能转换为有用的电能,例如为微型电池充电。热电微型发电机(μ-TEG)具有几个主要优点,使其成为收集两个交换表面之间任何温差的主要候选者。然而,它们的输出功率主要取决于μ-TEG的设计,接触电阻的有害影响的最小化以及μ-TEG与热源和散热器的耦合。这里,我们在理论上和实验上证明了使用基于碲化铋薄膜的创新柔性μ-TEG设计可以减轻这些固有的困难。我们的实验结果表明,在仅5 K的温差下,每个热电偶可产生5.5μW的输出功率,这与基于三维有限元分析的预测非常吻合。这些非凡的结果使我们的μ-TEG跻身目前最佳的微型发电机之列。
更新日期:2020-10-14
down
wechat
bug