当前位置: X-MOL 学术ACS Sustain. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Graphitic Carbon Nitride Microtubes for Efficient Photocatalytic Overall Water Splitting: The Morphology Derived Electrical Field Enhancement
ACS Sustainable Chemistry & Engineering ( IF 8.4 ) Pub Date : 2020-09-02 , DOI: 10.1021/acssuschemeng.0c04097
Lin Chen 1 , Xiaoli Zhao 2 , Xiaoguang Duan 3 , Jinqiang Zhang 2 , Zhimin Ao 4 , Pan Li 5 , Shuaijun Wang 1, 2 , Yixuan Wang 1 , Shuai Cheng 1 , Hongfei Zhao 1 , Fengting He 1 , Pei Dong 1 , Chaocheng Zhao 1 , Shaobin Wang 3 , Hongqi Sun 2
Affiliation  

The hollow morphology of photocatalysts significantly affects the light absorption, scattering, and charge separation ability. However, the mechanism that dictates the interaction between the light scattering and its modulation on electrical field for enhanced photocatalytic activity is not well understood hitherto. Herein, we investigate such a unique characteristic by designing three carbon nitride photocatalysts, e.g., graphitic carbon nitride microtubes (TCN), phosphorus-doped carbon nitride microrods (PCN), and bulk g-C3N4. The as-derived TCN exhibits 31 times higher photocatalytic activity in overall water splitting than pristine g-C3N4, which produces H2 and O2 at the reaction rates of 110.3 and 44.7 μmol h–1 g–1, respectively. The enhanced catalytic performance is attributed to the enhancement in electrical field, as evidenced by the improved charge separation and the finite element modeling simulation. Contributions from the specific surface area and band structure are also discussed. Unveiling the relationship between morphology and electrical field is expected to guide the rational design of morphology-oriented photocatalyst for highly efficient water splitting.

中文翻译:

用于高效光催化总水分解的石墨碳氮化物微管:形态派生的电场增强

光催化剂的中空形态显着影响光吸收,散射和电荷分离能力。但是,迄今为止,对于提高光催化活性指示光散射及其对电场的调制之间的相互作用的机理尚不十分了解。在这里,我们通过设计三种氮化碳光催化剂来研究这种独特的特性,例如,石墨碳氮化物微管(TCN),磷掺杂的碳氮化物微棒(PCN)和块状gC 3 N 4。衍生的TCN展现31倍相比于产生H 2和O 2的原始gC 3 N 4,在总的水分解中具有更高的光催化活性反应速度分别为110.3和44.7μmolh –1 g –1。增强的催化性能归因于电场的增强,如改进的电荷分离和有限元建模仿真所证明。还讨论了比表面积和能带结构的贡献。揭示形态学和电场之间的关系有望指导形态学取向的光催化剂的合理设计,以实现高效的水分解。
更新日期:2020-09-28
down
wechat
bug