当前位置: X-MOL 学术Geochim. Cosmochim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Oxygen isotope fractionation between water and the aqueous hydroxide ion
Geochimica et Cosmochimica Acta ( IF 5 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.gca.2020.08.025
Richard E. Zeebe

Abstract The stable oxygen isotope fractionation factor between water and the aqueous hydroxide ion is a fundamental geochemical parameter widely used in the Earth Sciences and other fields. Studies from the 1960s reported α ( H 2 O ( l ) - OH - ( aq ) ) , the fractionation factor between liquid H2O and aqueous OH−, theoretically as 1.046 and ∼ 1.048 (46‰ and 48‰ at 15 °C and 25 °C) and experimentally as 1.045 (45‰) at 15 °C. These, or similar values have been used in the literature for almost 60 years. Here I present quantum-chemical (QC) calculations, showing that the above theoretical values are fundamentally wrong as they pertain to free OH− (incorrectly assumed equivalent to aqueous OH−) and ignore intermolecular vibrational modes in solution. As a result, the theoretical values from the 1960s are off by a factor of ∼ 2 (when expressed in ‰), suggesting that the experimental value is also wrong. QC computations of OH−-water clusters with up to n = 22 water molecules demonstrate that hydrogen bonding in solution significantly affects the fundamental vibrational modes associated with OH− and substantially reduces the oxygen isotope fractionation between water and OH - ( aq ) , compared to the fractionation between water and free OH−. The most accurate QC methods tested here yield values for the fractionation factor between H2O and OH− in water clusters with n = 7 to 22 water molecules of ∼ 1.019 to ∼ 1.024 (19 to 24‰) at 25 °C based on the harmonic approximation. Estimated effects due to anharmonicity (from numerically demanding computations) could add uncertainties of up to ∼ 3‰ to these values.

中文翻译:

水和含水氢氧根离子之间的氧同位素分馏

摘要 水与氢氧根离子之间的稳定氧同位素分馏因子是地球科学等领域广泛应用的基本地球化学参数。1960 年代的研究报告了 α ( H 2 O ( l ) - OH - ( aq ) ) ,液体 H2O 和水性 OH− 之间的分馏因子,理论上为 1.046 和 ∼ 1.048(15 °C 和 25 时为 46‰ 和 48‰ °C),在 15 °C 时实验为 1.045 (45‰)。这些或类似的值已在文献中使用了近 60 年。在这里,我提出了量子化学 (QC) 计算,表明上述理论值从根本上是错误的,因为它们与游离 OH-(错误地假设等效于水溶液 OH-)有关,并且忽略了溶液中的分子间振动模式。因此,1960 年代的理论值偏离了约 2 倍(以‰表示时),说明实验值也是错误的。对多达 n = 22 个水分子的 OH−-水簇的 QC 计算表明,溶液中的氢键显着影响与 OH− 相关的基本振动模式,并显着降低了水和 OH - ( aq ) 之间的氧同位素分馏,相比之下水和游离 OH− 之间的分馏。此处测试的最准确的 QC 方法在 25 °C 下基于谐波近似得出 n = 7 到 22 个水分子的水簇中 H2O 和 OH− 之间的分馏因子值,约为 1.019 到 1.024(19 到 24‰) . 由非谐性引起的估计效应(来自要求严格的数值计算)可能会给这些值增加高达 3‰ 的不确定性。对多达 n = 22 个水分子的 OH−-水簇的 QC 计算表明,溶液中的氢键显着影响与 OH− 相关的基本振动模式,并显着降低了水和 OH - ( aq ) 之间的氧同位素分馏,相比之下水和游离 OH− 之间的分馏。此处测试的最准确的 QC 方法在 25 °C 下基于谐波近似得出 n = 7 到 22 个水分子的水团簇中 H2O 和 OH− 之间的分馏因子值,约为 1.019 到 1.024(19 到 24‰) . 由非谐性引起的估计影响(来自要求严格的数值计算)可能会给这些值增加高达 ~ 3‰的不确定性。对多达 n = 22 个水分子的 OH−-水簇的 QC 计算表明,溶液中的氢键显着影响与 OH− 相关的基本振动模式,并显着降低了水和 OH - ( aq ) 之间的氧同位素分馏,相比之下水和游离 OH− 之间的分馏。此处测试的最准确的 QC 方法在 25 °C 下基于谐波近似得出 n = 7 到 22 个水分子的水簇中 H2O 和 OH− 之间的分馏因子值,约为 1.019 到 1.024(19 到 24‰) . 由非谐性引起的估计效应(来自要求严格的数值计算)可能会给这些值增加高达 3‰ 的不确定性。
更新日期:2020-11-01
down
wechat
bug