当前位置: X-MOL 学术Lab Chip › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Smart bio-gel optofluidic Mach-Zehnder interferometers multiphoton-lithographically customized with chemo-mechanical-opto transduction and bio-triggered degradation.
Lab on a Chip ( IF 6.1 ) Pub Date : 2020-09-01 , DOI: 10.1039/d0lc00718h
Zhi-Shan Hou 1 , Yun-Lu Sun , Qi-Song Li , Xudong Fan , Rong Cheng
Affiliation  

Stimulus-responsive optical polymers, especially gels, are enabling new-concept energy-transducing “smart” optics. Full exploitation of their molecule-derived tuning and integration with traditional micro/nano-optics/optoelectronics rely on the implementation of devices by advanced “intelligent” micro/nano-manufacturing technologies, especially photolithographies with wide compatibility. In light of the increasing need for an organic combination of smart optical materials and digital micro/nano-manufacturing, novel “smart” optical micro-switches, namely, stimulus-actuated Mach–Zehnder interferometers as a proof-of-concept demonstration, were prototyped with protein-based hydrogels via aqueous multiphoton femtosecond laser direct writing (FsLDW). Protein-based Mach–Zehnder-interferometric smart optical devices here display a morphological quality sufficient for optical applications (average surface roughness ≤ ∼20 nm), nano-precision three-dimensional (3D) geometry of these millimeter-scale devices and purposely structured distribution of photo-crosslinking degree. Moreover, the device configuration was customized with unbalanced branches in which meticulous stimulus-responsive ability can be realized by simply tuning the surrounding chemical stimuli (i.e., Na2SO4 concentration here). The “heterogeneous” configuration with unbalanced branches (i.e., different optical and stimulus-responsive features) exhibits as-designed “smart” switching of propagated near-infrared light (∼808 nm). These capabilities, along with total biodegradation, indicate the application promise of this gel-based optic construction strategy towards novel “intelligent”, bio/eco-friendly, self-tuning or sensing photonic integrated systems like optofluidics.

中文翻译:

智能生物凝胶光流体马赫曾德尔干涉仪通过化学机械光转导和生物触发降解进行多光子平版印刷定制。

刺激响应的光学聚合物,尤其是凝胶,正在使新概念的能量转换“智能”光学器件成为可能。充分利用其分子衍生的调谐和与传统的微/纳米光学/光电子学的集成,需要借助先进的“智能”微/纳米制造技术(尤其是具有广泛兼容性的光刻技术)来实现器件。鉴于对智能光学材料和数字微/纳米制造有机结合的需求不断增长,人们提出了新颖的“智能”光学微动开关,即以激励方式驱动的马赫曾德尔干涉仪作为概念验证。通过基于蛋白质的水凝胶原型化水性多光子飞秒激光直接写入(FsLDW)。基于蛋白质的Mach–Zehnder干涉式智能光学设备在此显示出足以满足光学应用的形态质量(平均表面粗糙度≤〜20 nm),这些毫米级设备的纳米精度三维(3D)几何形状以及有目的的结构分布光交联度 此外,该设备配置是用不平衡分支定制的,其中可以通过简单地调整周围的化学刺激(此处的Na 2 SO 4浓度)来实现细微的刺激响应能力。分支不平衡的“异构”配置(,不同的光学和刺激响应功能)展现出所设计的对传播的近红外光(约808 nm)的“智能”切换。这些功能以及全部生物降解,表明这种基于凝胶的光学构造策略在新型“智能”,生物/生态友好,自调谐或传感光子集成系统(如光流体)方面的应用前景。
更新日期:2020-10-13
down
wechat
bug