当前位置: X-MOL 学术Trans. Inst. Meas. Control › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Predictor-based fractional disturbance rejection control for LTI fractional-order systems with input delay
Transactions of the Institute of Measurement and Control ( IF 1.8 ) Pub Date : 2020-09-02 , DOI: 10.1177/0142331220951407
Sajad Pourali 1 , Hamed Mojallali 1, 2
Affiliation  

In this paper, a predictor-based fractional disturbance rejection control (PFDRC) scheme is proposed for processes subject to input delay. The proposed scheme can be generally applied to open-loop stable, integrative, and unstable integer-order processes, but it can be particularly utilized for open-loop stable fractional-order systems. A closed-loop reference model is formulated based on Bode’s ideal transfer function. The primary control design objective is to enable the output of input-delay process to follow the closed-loop reference model. Towards this end, the closed-loop transfer function of the PFDRC must take the same structure as that of the reference model. Meanwhile, the adverse effects of the input delay must be mitigated. To meet the latter, a filtered Smith predictor (FSP) is employed to provide a prediction of delay-less output response. To address the former, process dynamics are treated as a common disturbance; then, a fractional-order extended state observer (FESO) is introduced to estimate the delay-less output response and also the total disturbance (i.e. external disturbance and system uncertainties). The PFDRC feedback controller is easily derived by the gain crossover frequency of Bode’s ideal transfer function which facilitates the tuning process. The convergence analysis of the FESO is carried out in terms of BIBO stability. The effectiveness of the proposed control scheme is verified through three illustrative examples from the literature.

中文翻译:

具有输入延迟的 LTI 分数阶系统的基于预测器的分数抗扰控制

在本文中,针对受输入延迟影响的过程,提出了一种基于预测器的分数抗扰控制(PFDRC)方案。所提出的方案可以普遍应用于开环稳定、积分和不稳定整数阶过程,但它可以特别用于开环稳定分数阶系统。闭环参考模型是基于 Bode 的理想传递函数制定的。主要控制设计目标是使输入延迟过程的输出遵循闭环参考模型。为此,PFDRC 的闭环传递函数必须采用与参考模型相同的结构。同时,必须减轻输入延迟的不利影响。遇到后者,采用滤波史密斯预测器 (FSP) 来提供无延迟输出响应的预测。为了解决前者,过程动态被视为一种常见的干扰;然后,引入分数阶扩展状态观测器(FESO)来估计无延迟输出响应以及总扰动(即外部扰动和系统不确定性)。PFDRC 反馈控制器很容易通过 Bode 理想传递函数的增益交叉频率推导出来,这有助于调谐过程。FESO 的收敛性分析是在 BIBO 稳定性方面进行的。通过文献中的三个说明性示例验证了所提出的控制方案的有效性。引入了分数阶扩展状态观测器 (FESO) 来估计无延迟输出响应以及总扰动(即外部扰动和系统不确定性)。PFDRC 反馈控制器很容易通过 Bode 理想传递函数的增益交叉频率推导出来,这有助于调谐过程。FESO 的收敛性分析是在 BIBO 稳定性方面进行的。通过文献中的三个说明性示例验证了所提出的控制方案的有效性。引入了分数阶扩展状态观测器 (FESO) 来估计无延迟输出响应以及总扰动(即外部扰动和系统不确定性)。PFDRC 反馈控制器很容易通过 Bode 理想传递函数的增益交叉频率推导出来,这有助于调谐过程。FESO 的收敛性分析是在 BIBO 稳定性方面进行的。通过文献中的三个说明性示例验证了所提出的控制方案的有效性。FESO 的收敛性分析是在 BIBO 稳定性方面进行的。通过文献中的三个说明性示例验证了所提出的控制方案的有效性。FESO 的收敛性分析是在 BIBO 稳定性方面进行的。通过文献中的三个说明性示例验证了所提出的控制方案的有效性。
更新日期:2020-09-02
down
wechat
bug