当前位置: X-MOL 学术J. Vib. Control › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effects of gearbox housing flexibility on dynamic characteristics of gear transmission system
Journal of Vibration and Control ( IF 2.8 ) Pub Date : 2020-09-01 , DOI: 10.1177/1077546320953733
Xiannian Kong 1 , Jinyuan Tang 1 , Chen Siyu 1 , Zehua Hu 1
Affiliation  

The lightweight design of the gear system is the current tendency. The gearbox housing is modeled as a rigid body and is neglected in the gear dynamic analysis. It is of great significance to introduce the gearbox housing flexibility into the dynamic analysis and analyze the influence of the gearbox housing flexibility on the dynamic behaviors of the gear transmission system, as this can provide important instructions for the lightweight structure design of the housing. The gear–rotor–bearing model and the gear–rotor–bearing–housing model are established by the finite element node method. A Timoshenko beam element is used to represent the shafts. To illustrate the housing effect, two kinds of housing model are established: one tends to be rigid and the other to be flexible and lighter. The housings are simplified as a super element obtained by the dynamic substructure method. Natural frequencies and dynamic responses are illustrated to indicate the effects of housing flexibility. Comparisons of numerical results show that the rigid housing can be neglected for its little effect on the dynamic analysis. The flexibility of the housing slightly reduces the natural frequencies of the gear transmission system, and the maximum reduction is 6.05%. Meanwhile, the amplitudes of the first two resonance peaks of the dynamic transmission error decrease by 9.5% and 5.05%. Besides, more response peaks emerge at higher speeds when the flexibility of housing increases. The complete phenomena of dynamic behaviors of the gear transmission system can be obtained by considering the housing flexibility.



中文翻译:

变速箱壳体柔性对齿轮传动系统动态特性的影响

齿轮系统的轻量化设计是当前的趋势。变速箱壳体建模为刚性体,在齿轮动力学分析中被忽略。将变速箱壳体的柔性引入动态分析并分析变速箱壳体的柔性对齿轮传动系统的动态性能具有重要意义,因为这可以为壳体的轻量化结构设计提供重要指导。通过有限元节点法建立了齿轮-转子-轴承模型和齿轮-转子-轴承壳模型。蒂莫申科梁单元用于表示轴。为了说明住房的影响,建立了两种住房模型:一种倾向于刚性,另一种倾向于柔性和轻便。外壳简化为通过动态子结构方法获得的超级元素。说明了固有频率和动态响应,以指示外壳灵活性的影响。数值结果比较表明,刚性壳体对动力分析的影响很小,可以忽略不计。外壳的灵活性稍微降低了齿轮传动系统的固有频率,最大降低率为6.05%。同时,动态传输误差的前两个共振峰的幅度分别降低了9.5%和5.05%。此外,随着外壳灵活性的提高,以更高的速度出现更多的响应峰值。通过考虑外壳的灵活性,可以获得齿轮传动系统动态行为的完整现象。说明了固有频率和动态响应,以指示外壳灵活性的影响。数值结果比较表明,刚性壳体对动力分析的影响很小,可以忽略不计。外壳的灵活性稍微降低了齿轮传动系统的固有频率,最大降低率为6.05%。同时,动态传输误差的前两个共振峰的幅度分别降低了9.5%和5.05%。此外,随着外壳灵活性的提高,以更高的速度出现更多的响应峰值。通过考虑外壳的灵活性,可以获得齿轮传动系统动态行为的完整现象。说明了固有频率和动态响应,以指示外壳灵活性的影响。数值结果比较表明,刚性壳体对动力分析的影响很小,可以忽略不计。外壳的灵活性略微降低了齿轮传动系统的固有频率,最大降低率为6.05%。同时,动态传输误差的前两个共振峰的幅度分别降低了9.5%和5.05%。此外,随着外壳灵活性的提高,以更高的速度出现更多的响应峰值。通过考虑外壳的灵活性,可以获得齿轮传动系统动态行为的完整现象。数值结果比较表明,刚性壳体对动力分析的影响很小,可以忽略不计。外壳的柔韧性稍微降低了齿轮传动系统的固有频率,最大降低率为6.05%。同时,动态传输误差的前两个共振峰的幅度分别降低了9.5%和5.05%。此外,随着外壳灵活性的提高,以更高的速度出现更多的响应峰值。通过考虑外壳的灵活性,可以获得齿轮传动系统动态行为的完整现象。数值结果比较表明,刚性壳体对动力分析的影响很小,可以忽略不计。外壳的灵活性稍微降低了齿轮传动系统的固有频率,最大降低率为6.05%。同时,动态传输误差的前两个共振峰的幅度分别降低了9.5%和5.05%。此外,随着外壳灵活性的提高,以更高的速度出现更多的响应峰值。通过考虑外壳的灵活性,可以获得齿轮传动系统动态行为的完整现象。动态传输误差的前两个共振峰的幅度分别降低了9.5%和5.05%。此外,随着外壳灵活性的提高,以更高的速度出现更多的响应峰值。通过考虑外壳的灵活性,可以获得齿轮传动系统动态行为的完整现象。动态传输误差的前两个共振峰的幅度分别降低了9.5%和5.05%。此外,随着外壳灵活性的提高,以更高的速度出现更多的响应峰值。通过考虑外壳的灵活性,可以获得齿轮传动系统动态行为的完整现象。

更新日期:2020-09-02
down
wechat
bug