当前位置: X-MOL 学术Aerosol Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Orthogonal optimization design of structural parameters for bioaerosol sampler using computational fluid dynamics simulation and field experiments
Aerosol Science and Technology ( IF 5.2 ) Pub Date : 2020-09-18 , DOI: 10.1080/02786826.2020.1813873
Xuezheng Ma 1, 2 , Zhijian Liu 3 , Fanshaung Li 2 , Yu Niu 2 , Beibei Wang 2 , Huipeng Li 2 , Haiyang Liu 3 , Rui Rong 3 , Guoyan Wang 4 , Liping Zhang 2 , Jinsong Li 5 , Kongxin Hu 2 , Tao Zheng 1
Affiliation  

Abstract Aerosol-to-hydrosol biological samplers have a low particle collection rate and aerosol-to-liquid efficiency owing to their airflow rate and geometry. The study develops a method to optimize the design of an aerosol-to-hydrosol bioaerosol sampler for better particle-collection efficiency. Four important performance parameters—particle size, nozzle angle, liquid container shape, and distance between nozzle and liquid surface—were optimized using the orthogonal design method. These parameters, along with the particle-capturing characteristics, were predicted using an approach based on computational fluid dynamics. Subsequently, this approach was used to test the bioaerosol’s capture efficiency. A prototype based on the optimized geometrical design was 3D-printed and tested in a field experiment. The most optimal parameters were particle size = 10 µm; inverted cone shape; liquid-level–nozzle distance = 10 mm; and angle = 45°. Copyright © 2020 American Association for Aerosol Research

中文翻译:

基于计算流体动力学模拟和现场实验的生物气溶胶采样器结构参数正交优化设计

摘要 气溶胶到水溶胶生物采样器由于其气流速率和几何形状而具有较低的颗粒收集率和气溶胶到液体的效率。该研究开发了一种方法来优化气溶胶到水溶胶生物气溶胶采样器的设计,以提高颗粒收集效率。四个重要的性能参数——粒径、喷嘴角度、液体容器形状以及喷嘴与液面之间的距离——使用正交设计方法进行了优化。这些参数以及粒子捕获特性是使用基于计算流体动力学的方法进行预测的。随后,这种方法被用于测试生物气溶胶的捕获效率。基于优化几何设计的原型进行了 3D 打印,并在现场实验中进行了测试。最佳参数是粒径 = 10 µm;倒锥形;液位-喷嘴距离 = 10 mm;和角度 = 45°。版权所有 © 2020 美国气溶胶研究协会
更新日期:2020-09-18
down
wechat
bug