当前位置: X-MOL 学术Proc. Am. Math. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Inverse iteration for the Monge–Ampère eigenvalue problem
Proceedings of the American Mathematical Society ( IF 1 ) Pub Date : 2020-08-11 , DOI: 10.1090/proc/15157
Farhan Abedin , Jun Kitagawa

Abstract:We present an iterative method based on repeatedly inverting the Monge-Ampère operator with Dirichlet boundary condition and prescribed right-hand side on a bounded, convex domain $ \Omega \subset \mathbb{R}^{n}$. We prove that the iterates $ u_k$ generated by this method converge as $ k \to \infty $ to a solution of the Monge-Ampère eigenvalue problem
\begin{displaymath}\begin {cases}\mathrm {det} D^2u = \lambda _{MA} (-u)^n & \qu... ...ega ,\\ u = 0 & \quad \text {on } \partial \Omega . \end{cases}\end{displaymath}

Since the solutions of this problem are unique up to a positive multiplicative constant, the normalized iterates $ \hat {u}_k \colonequals \frac {u_k}{\vert\vert u_k\vert\vert _{L^{\infty }(\Omega )}}$ converge to the eigenfunction of unit height. In addition, we show that $ \lim _{k \to \infty } R(u_k) = \lim _{k \to \infty } R(\hat {u}_k) = \lambda _{MA}$, where the Rayleigh quotient $ R(u)$ is defined as
$\displaystyle R(u) \colonequals \frac {\int _{\Omega } (-u) \ \det D^2u}{\int _{\Omega } (-u)^{n+1}}.$

Our method converges for a wide class of initial choices $ u_0$ that can be constructed explicitly, and does not rely on prior knowledge of the Monge-Ampère eigenvalue $ \lambda _{MA}$.


中文翻译:

Monge–Ampère特征值问题的逆迭代

摘要:我们提出了一种基于Dirichlet边界条件并在有界凸域上规定了右手边的Monge-Ampère算子反复求逆的迭代方法。我们证明了该方法生成的迭代收敛到Monge-Ampère特征值问题的解 $ \ Omega \ subset \ mathbb {R} ^ {n} $$ u_k $ $ k \ to \ infty $
\ begin {displaymath} \ begin {cases} \ mathrm {det} D ^ 2u = \ lambda _ {MA}(-u)^ n&\ qu ... ... ega,\\ u = 0&\ quad \ text {on} \ partial \ Omega。 \ end {cases} \ end {displaymath}

由于此问题的解决方案在一个正的乘法常数之前都是唯一的,因此归一化的迭代收敛到单位高度的本征函数。此外,我们证明,其中瑞利商定义为 $ \ hat {u} _k \ colonequals \ frac {u_k} {\ vert \ vert u_k \ vert \ vert _ {L ^ {\ infty}(\ Omega}}} $ $ \ lim _ {k \ to \ infty} R(u_k)= \ lim _ {k \ to \ infty} R(\ hat {u} _k)= \ lambda _ {MA} $$ R(u)$
$ \ displaystyle R(u)\ colonequals \ frac {\ int _ {\ Omega}(-u)\ \ det D ^ 2u} {\ int _ {\ Omega}(-u)^ {n + 1}}。 $

我们的方法适用于$ u_0 $可以明确构造的多种初始选择,并且不依赖于对Monge-Ampère特征值的先验知识。 $ \ lambda _ {MA} $
更新日期:2020-09-02
down
wechat
bug