当前位置: X-MOL 学术Mech. Syst. Signal Process. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Reducing uncertainty in time domain fatigue analysis of offshore structures using control variates
Mechanical Systems and Signal Processing ( IF 8.4 ) Pub Date : 2021-02-01 , DOI: 10.1016/j.ymssp.2020.107192
Ruifeng Chen , Ying Min Low

Abstract This study is concerned with time domain fatigue analysis of offshore structures subjected to random waves. The fatigue damage calculated from a single realization of the stress time history is random, thus the mean damage is typically estimated via Monte Carlo simulation (MCS), by averaging over multiple realizations. This approach is time-consuming, because each realization involves a time domain dynamic analysis, and MCS has a slow convergence rate. Variance reduction techniques can improve the efficiency of MCS, but successful implementation necessitate prior information on the system behavior, which is difficult to acquire for this high-dimensional problem. Herein, a method is developed for reducing the variance of the MCS estimator of the damage, based on a new technique known as auto control variates. The control function is constructed via artificial neural network trained from existing MCS data, thus avoiding the need for prior information or additional simulations. The proposed method has several advantages; it is unbiased, and an error estimate is available. Besides, variance reduction is implemented at the post-processing stage; allowing multiple stress locations to be evaluated from the same dynamic simulation results. The case studies include a nonlinear single-degree-of-freedom system under different scenarios, and a full nonlinear model of a floating system. The proposed method enhances the MCS efficiency for all cases, with speedups ranging from one to two orders of magnitude.

中文翻译:

使用控制变量减少海上结构时域疲劳分析的不确定性

摘要 本研究涉及受随机波作用的海上结构的时域疲劳分析。根据应力时程的单一实现计算的疲劳损伤是随机的,因此平均损伤通常是通过蒙特卡罗模拟 (MCS) 对多个实现进行平均来估计的。这种方法比较耗时,因为每次实现都涉及到时域动态分析,而MCS的收敛速度较慢。方差减少技术可以提高 MCS 的效率,但成功的实现需要系统行为的先验信息,这对于这个高维问题是很难获得的。在本文中,基于称为自动控制变量的新技术,开发了一种用于减小损伤的 MCS 估计器方差的方法。控制函数是通过从现有 MCS 数据训练的人工神经网络构建的,从而避免了对先验信息或额外模拟的需要。所提出的方法有几个优点;它是无偏的,并且可以使用误差估计。此外,在后处理阶段实施方差减少;允许从相同的动态模拟结果评估多个应力位置。案例研究包括不同场景下的非线性单自由度系统,以及浮动系统的全非线性模型。所提出的方法提高了所有情况下的 MCS 效率,加速范围从一到两个数量级。所提出的方法有几个优点;它是无偏的,并且可以使用误差估计。此外,在后处理阶段实施方差减少;允许从相同的动态模拟结果评估多个应力位置。案例研究包括不同场景下的非线性单自由度系统,以及浮动系统的全非线性模型。所提出的方法提高了所有情况下的 MCS 效率,加速范围从一到两个数量级。所提出的方法有几个优点;它是无偏的,并且可以使用误差估计。此外,在后处理阶段实施方差减少;允许从相同的动态模拟结果评估多个应力位置。案例研究包括不同场景下的非线性单自由度系统,以及浮动系统的全非线性模型。所提出的方法提高了所有情况下的 MCS 效率,加速范围从一到两个数量级。案例研究包括不同场景下的非线性单自由度系统,以及浮动系统的全非线性模型。所提出的方法提高了所有情况下的 MCS 效率,加速范围从一到两个数量级。案例研究包括不同场景下的非线性单自由度系统,以及浮动系统的全非线性模型。所提出的方法提高了所有情况下的 MCS 效率,加速范围从一到两个数量级。
更新日期:2021-02-01
down
wechat
bug