当前位置: X-MOL 学术J. Energy Storage › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of integrating the hysteresis component to the equivalent circuit model of Lithium-ion battery for dynamic and non-dynamic applications
Journal of Energy Storage ( IF 9.4 ) Pub Date : 2020-09-02 , DOI: 10.1016/j.est.2020.101785
Manh-Kien Tran , Anosh Mevawala , Satyam Panchal , Kaamran Raahemifar , Michael Fowler , Roydon Fraser

The demand for lithium-ion (Li-ion) batteries is on the rise because of the increase in usage of electric vehicles (EVs) and other electrified applications. The battery management system (BMS) plays an important role in ensuring the safe and reliable operation of the battery. In order for the BMS to function and manage the battery pack effectively, a battery model is needed to monitor and predict the behavior of the battery. The equivalent circuit model (ECM) is widely used in online battery applications such as EVs, due to its simplicity and accuracy. There has been evidence suggesting that the addition of the hysteresis effect to the ECM would improve its accuracy. This paper presents an investigation into the effect of integrating hysteresis into the ECM, for both non-dynamic and dynamic applications. Two models are introduced, the first-order ECM and the first-order ECM with hysteresis (ECMwH). The model parameters are estimated using the Levenberg–Marquardt algorithm and training datasets. The models are then compared in terms of accuracy and computing time, using two driving cycles and a characterization cycle. The results show that the addition of the hysteresis effect to the first-order ECM improves the accuracy of the model in non-dynamic applications more significantly than in dynamic applications. The computing time increases, as expected, for the ECMwH, suggesting that it might not be beneficial to integrate hysteresis to battery models for online applications such as EVs.



中文翻译:

将滞后分量集成到动态和非动态应用的锂离子电池等效电路模型中的影响

由于电动汽车(EV)和其他电动应用的使用增加,对锂离子(Li-ion)电池的需求正在上升。电池管理系统(BMS)在确保电池安全可靠运行方面起着重要作用。为了使BMS有效地运行和管理电池组,需要一个电池模型来监视和预测电池的行为。等效电路模型(ECM)由于其简单性和准确性而广泛用于在线电池应用中,例如EV。有证据表明,将滞后效应添加到ECM可以提高其准确性。本文针对非动态和动态应用,介绍了将磁滞集成到ECM中的效果。介绍了两种模型,一阶ECM和具有滞后的一阶ECM(ECMwH)。使用Levenberg-Marquardt算法和训练数据集估计模型参数。然后,使用两个驱动周期和一个表征周期,在准确性和计算时间方面对模型进行比较。结果表明,将滞后效应添加到一阶ECM可以比动态应用更显着地提高非动态应用中模型的准确性。如预期的那样,ECMwH的计算时间增加了,这表明将滞后现象集成到在线模型(如EV)的电池模型中可能没有好处。然后,使用两个驾驶周期和一个表征周期,在准确性和计算时间方面对模型进行比较。结果表明,将滞后效应添加到一阶ECM可以比动态应用更显着地提高非动态应用中模型的准确性。如预期的那样,ECMwH的计算时间增加了,这表明将滞后现象集成到在线模型(如EV)的电池模型中可能没有好处。然后,使用两个驾驶周期和一个表征周期,在准确性和计算时间方面对模型进行比较。结果表明,将滞后效应添加到一阶ECM可以比动态应用更显着地提高非动态应用中模型的准确性。如预期的那样,ECMwH的计算时间增加了,这表明将滞后现象集成到在线模型(如EV)的电池模型中可能没有好处。

更新日期:2020-09-02
down
wechat
bug