当前位置: X-MOL 学术J. Tissue Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A universal multi-platform 3D printed bioreactor chamber for tendon tissue engineering.
Journal of Tissue Engineering ( IF 8.2 ) Pub Date : 2020-09-01 , DOI: 10.1177/2041731420942462
Adam J Janvier 1 , Elizabeth Canty-Laird 1 , James R Henstock 1
Affiliation  

A range of bioreactors use linear actuators to apply tensile forces in vitro, but differences in their culture environments can limit a direct comparison between studies. The widespread availability of 3D printing now provides an opportunity to develop a ‘universal’ bioreactor chamber that, with minimal exterior editing can be coupled to a wide range of commonly used linear actuator platforms, for example, the EBERS-TC3 and CellScale MCT6, resulting in a greater comparability between results and consistent testing of potential therapeutics. We designed a bioreactor chamber with six independent wells that was 3D printed in polylactic acid using an Ultimaker 2+ and waterproofed using a commercially available coating (XTC-3D), an oxirane resin. The cell culture wells were further coated with Sylgard-184 polydimethylsiloxane (PDMS) to produce a low-adhesion well surface. With appropriate coating and washing steps, all materials were shown to be non-cytotoxic by lactate dehydrogenase assay, and the bioreactor was waterproof, sterilisable and reusable. Tissue-engineered tendons were generated from human mesenchymal stem cells in a fibrin hydrogel and responded to 5% cyclic strain (0.5 Hz, 5 h/day, 21 days) in the bioreactor by increased production of collagen-Iα1 and decreased production of collagen-IIIα1. Calcification of the extracellular matrix was observed in unstretched tendon controls indicating abnormal differentiation, while tendons cultured under cyclic strain did not calcify and exhibited a tenogenic phenotype. The ease of manufacturing this bioreactor chamber enables researchers to quickly and cheaply reproduce this culture environment for use with many existing bioreactor actuator platforms by downloading the editable CAD files from a public database and following the manufacturing steps we describe.



中文翻译:

用于肌腱组织工程的通用多平台 3D 打印生物反应器室。

一系列生物反应器使用线性致动器在体外施加拉力, 但他们文化环境的差异可能会限制研究之间的直接比较。3D 打印的广泛可用性现在为开发“通用”生物反应器室提供了机会,该生物反应器室通过最少的外部编辑可以耦合到各种常用的线性致动器平台,例如 EBERS-TC3 和 CellScale MCT6,从而在结果和潜在疗法的一致测试之间具有更大的可比性。我们设计了一个带有六个独立孔的生物反应器室,使用 Ultimaker 2+ 在聚乳酸中进行 3D 打印,并使用市售的环氧乙烷树脂涂层 (XTC-3D) 进行防水处理。细胞培养孔进一步涂有 Sylgard-184 聚二甲基硅氧烷 (PDMS) 以产生低粘附性孔表面。通过适当的涂层和洗涤步骤,乳酸脱氢酶测定表明所有材料均无细胞毒性,并且生物反应器防水、可消毒和可重复使用。组织工程肌腱由纤维蛋白水凝胶中的人间充质干细胞产生,并通过增加胶原蛋白-Iα1 的产生和减少胶原蛋白的产生来响应生物反应器中 5% 的循环应变(0.5 Hz,5 小时/天,21 天) IIIα1。在未拉伸的肌腱对照中观察到细胞外基质的钙化,表明分化异常,而在循环应变下培养的肌腱没有钙化并表现出肌腱表型。

更新日期:2020-09-01
down
wechat
bug