当前位置: X-MOL 学术Nat. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers.
Nature Nanotechnology ( IF 38.3 ) Pub Date : 2020-08-31 , DOI: 10.1038/s41565-020-0760-z
Chuchuan Hong 1, 2 , Sen Yang 1, 3 , Justus C Ndukaife 1, 2
Affiliation  

Optical tweezers have emerged as a powerful tool for the non-invasive trapping and manipulation of colloidal particles and biological cells1,2. However, the diffraction limit precludes the low-power trapping of nanometre-scale objects. Substantially increasing the laser power can provide enough trapping potential depth to trap nanoscale objects. Unfortunately, the substantial optical intensity required causes photo-toxicity and thermal stress in the trapped biological specimens3. Low-power near-field nano-optical tweezers comprising plasmonic nanoantennas and photonic crystal cavities have been explored for stable nanoscale object trapping4,5,6,7,8,9,10,11,12,13. However, the demonstrated approaches still require that the object is trapped at the high-light-intensity region. We report a new kind of optically controlled nanotweezers, called opto-thermo-electrohydrodynamic tweezers, that enable the trapping and dynamic manipulation of nanometre-scale objects at locations that are several micrometres away from the high-intensity laser focus. At the trapping locations, the nanoscale objects experience both negligible photothermal heating and light intensity. Opto-thermo-electrohydrodynamic tweezers employ a finite array of plasmonic nanoholes illuminated with light and an applied a.c. electric field to create the spatially varying electrohydrodynamic potential that can rapidly trap sub-10 nm biomolecules at femtomolar concentrations on demand. This non-invasive optical nanotweezing approach is expected to open new opportunities in nanoscience and life science by offering an unprecedented level of control of nano-sized objects, including photo-sensitive biological molecules.



中文翻译:

使用光热电流体动力镊子对亚 10 nm 物体和生物分子进行隔离捕获和操纵。

光镊已成为非侵入性捕获和操作胶体颗粒和生物细胞1,2的强大工具。然而,衍射极限排除了纳米级物体的低功率捕获。大幅增加激光功率可以提供足够的捕获潜在深度来捕获纳米级物体。不幸的是,所需的大量光强度会导致被困生物标本3中的光毒性和热应力。已经探索了包含等离子体纳米天线和光子晶体腔的低功率近场纳米光学镊子用于稳定纳米级物体捕获4,5,6,7,8,9,10,11,12,13. 然而,所展示的方法仍然需要物体被困在高光强度区域。我们报告了一种新型的光控纳米镊子,称为光热电流体动力镊子,它能够在距高强度激光焦点几微米的位置捕获和动态操纵纳米级物体。在捕获位置,纳米级物体经历的光热加热和光强度都可以忽略不计。光-热-电流体动力镊子采用有限阵列的等离子体纳米孔,用光和外加交流电场照射,以产生空间变化的电流体动力电位,可根据需要以飞摩尔浓度快速捕获亚 10 nm 生物分子。

更新日期:2020-08-31
down
wechat
bug