当前位置: X-MOL 学术Mol. Cell › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structure-Based Mechanisms of a Molecular RNA Polymerase/Chaperone Machine Required for Ribosome Biosynthesis.
Molecular Cell ( IF 16.0 ) Pub Date : 2020-08-31 , DOI: 10.1016/j.molcel.2020.08.010
Yong-Heng Huang 1 , Tarek Hilal 2 , Bernhard Loll 1 , Jörg Bürger 3 , Thorsten Mielke 4 , Christoph Böttcher 2 , Nelly Said 1 , Markus C Wahl 5
Affiliation  

Bacterial ribosomal RNAs are synthesized by a dedicated, conserved transcription-elongation complex that transcribes at high rates, shields RNA polymerase from premature termination, and supports co-transcriptional RNA folding, modification, processing, and ribosomal subunit assembly by presently unknown mechanisms. We have determined cryo-electron microscopy structures of complete Escherichia coli ribosomal RNA transcription elongation complexes, comprising RNA polymerase; DNA; RNA bearing an N-utilization-site-like anti-termination element; Nus factors A, B, E, and G; inositol mono-phosphatase SuhB; and ribosomal protein S4. Our structures and structure-informed functional analyses show that fast transcription and anti-termination involve suppression of NusA-stabilized pausing, enhancement of NusG-mediated anti-backtracking, sequestration of the NusG C-terminal domain from termination factor ρ, and the ρ blockade. Strikingly, the factors form a composite RNA chaperone around the RNA polymerase RNA-exit tunnel, which supports co-transcriptional RNA folding and annealing of distal RNA regions. Our work reveals a polymerase/chaperone machine required for biosynthesis of functional ribosomes.



中文翻译:

核糖体生物合成所需的分子RNA聚合酶/分子伴侣机器的基于结构的机制。

细菌核糖体RNA是由专用的,保守的转录-延伸复合体合成的,该复合体以高速率转录,保护RNA聚合酶免于过早终止,并通过目前未知的机制支持共转录RNA的折叠,修饰,加工和核糖体亚基组装。我们已经确定了完整大肠杆菌的冷冻电子显微镜结构核糖体RNA转录延伸复合物,包含RNA聚合酶;脱氧核糖核酸; RNA,带有类似N-利用位点的抗终止元件;Nus因子A,B,E和G;肌醇单磷酸酶SuhB; 和核糖体蛋白S4。我们的结构和结构相关的功能分析表明,快速转录和抗终止涉及抑制NusA稳定的暂停,增强NusG介导的抗回溯,从终止因子ρ隔离NusG C末端结构域和ρ封锁。令人惊讶的是,这些因素在RNA聚合酶RNA出口通道周围形成了复合RNA分子伴侣,从而支持共转录RNA折叠和远端RNA区域的退火。我们的工作揭示了功能性核糖体生物合成所需的聚合酶/分子伴侣机器。

更新日期:2020-09-18
down
wechat
bug