当前位置: X-MOL 学术Energy Storage Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrolyte-mediated nanograin intermetallic formation enables superionic conduction and electrode stability in rechargeable batteries
Energy Storage Materials ( IF 20.4 ) Pub Date : 2020-08-30 , DOI: 10.1016/j.ensm.2020.08.012
Jaegeon Ryu , Jieun Kang , Hongju Kim , Jun Hee Lee , Hosik Lee , Soojin Park

Toward realizing the high-energy-density rechargeable batteries, self-supporting aluminum (Al) foil has been explored as an emerging anode to replace the graphite anode. However, the implementation of Al foil anodes into the rechargeable batteries has been plagued by limited charge-carrier kinetics, substantial volume variation, and poor electrochemical reversibility. Herein, we introduced an electrolyte-mediated mechanical prelithiation method at relatively low pressure, resulting in a gradient and nanograins intermetallic LiAl layer onto the Al under the consideration of matrix hardness to circumvent the large volume change. The designed electrode can provide superionic conduction, structural integrity, as well as high Coulombic efficiency compared with those of bare Al anode, as evidenced by theoretical calculations and battery experiments. This electrode showed fast-charging (112.3 mAh g−1 at 5 C), ultrastable capacity retention (~100.0% at after 600 cycles), and high Coulombic efficiency >99.7% at 10 C under the high-capacity loading condition in the dual-ion battery. When paired with LiFePO4 cathode, the gradient and nanograins intermetallic electrode render conventional lithium-ion battery long-lasting for 200 cycles, demonstrating the decent interfacial and architectural design for the foil-type electrodes.



中文翻译:

电解质介导的纳米颗粒金属间化合物的形成可实现可充电电池的超离子传导和电极稳定性

为了实现高能量密度可充电电池,已经研究了自支撑铝(Al)箔作为新兴的阳极来代替石墨阳极。然而,由于电荷载流子动力学有限,体积变化大以及电化学可逆性差,在可充电电池中使用铝箔阳极受到了困扰。在这里,我们引入了一种在相对较低压力下的电解质介导的机械预锂化方法,在考虑到基体硬度的情况下,在Al上形成了梯度和纳米晶粒的金属间LiAl层,从而规避了大的体积变化。理论计算和电池实验证明,与裸铝阳极相比,所设计的电极可提供超离子导电性,结构完整性以及高库仑效率。双离子电池在高容量负载条件下,在5 C时为-1),超稳定的容量保持率(在600次循环后约为100.0%)和在10 C时的库仑效率高,> 99.7%。当与LiFePO 4阴极配对时,梯度和纳米晶粒金属间电极可使常规锂离子电池持久耐用200个循环,这证明了箔型电极的良好界面和结构设计。

更新日期:2020-09-02
down
wechat
bug