当前位置: X-MOL 学术Proc. Inst. Mech. Eng. Part D J. Automob. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An experimentally corroborated framework for emulating wheel lock in a heavy vehicle brake dynamometer
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering ( IF 1.7 ) Pub Date : 2020-08-29 , DOI: 10.1177/0954407020950056
Akhil Challa 1 , Harsh Kumar Singh 1 , Karthik Ramakrushnan 1 , Shankar C Subramanian 1 , Sankarganesh Sankaralingam 2 , Gunasekaran Vivekanandan 2 , Sriram Sivaram 2
Affiliation  

Wheel lock in a vehicle during braking is detrimental to its safety, in addition to causing poor braking performance. Wheel slip regulation algorithms could potentially prevent wheel lock and are hence required to be tested and tuned thoroughly prior to in-vehicle deployment. Generally, software-in-the-loop and hardware-in-the-loop tests are explored before on-road vehicle testing. A brake dynamometer can potentially be utilized for wheel slip regulation testing, and this can be placed in between hardware-in-the-loop tests and on-road vehicle testing. Prior to evaluation of wheel slip regulation on a brake dynamometer, it is imperative to realize a wheel lock scenario. This work proposes a methodical framework for emulating wheel lock in a brake dynamometer. In this study, the dynamic effects during braking, particularly load transfer, wheel slip and tyre–road interactions, are subsumed into a single variable termed ‘equivalent inertia’ to replicate a wheel lock event. The variations of this variable were captured through extensive tests on a hardware-in-the-loop platform that consists of a pneumatic brake setup interfaced with IPG TruckMaker® co-simulated with MATLAB/Simulink®, across varying load, road and braking conditions. Equivalent inertia profiles thus generated were then realized in the brake dynamometer, via mechanical discs and electrical inertia. Angular speed profiles from hardware-in-the-loop and dynamometer tests were compared to corroborate the framework. A close correlation between the profiles, highlighted by the root mean square deviation of the order of 100 rad/s, established the effectiveness of the proposed scheme.

中文翻译:

在重型车辆制动测功机中模拟车轮锁定的实验验证框架

除了导致制动性能不佳之外,制动期间车辆中的车轮抱死对其安全性也是有害的。车轮打滑调节算法可能会防止车轮抱死,因此需要在车载部署之前进行彻底的测试和调整。通常,在道路车辆测试之前探索软件在环和硬件在环测试。制动测功机可以潜在地用于车轮打滑调节测试,这可以置于硬件在环测试和道路车辆测试之间。在评估制动测功机上的车轮滑移调节之前,必须实现车轮锁定场景。这项工作提出了一种在制动测功机中模拟车轮锁定的系统框架。在这项研究中,制动过程中的动态效应,特别是负载转移,车轮滑移和轮胎-道路相互作用被归入一个称为“等效惯性”的变量中,以复制车轮抱死事件。该变量的变化是通过在硬件在环平台上进行的广泛测试来捕获的,该平台包括与 IPG TruckMaker® 接口的气动制动器设置,并与 MATLAB/Simulink® 共同仿真,在不同的负载、道路和制动条件下。然后通过机械盘和电惯性在制动测功机中实现由此产生的等效惯性曲线。来自硬件在环和测功机测试的角速度曲线进行了比较以证实该框架。轮廓之间的密切相关性(由 100 rad/s 数量级的均方根偏差突出显示)确立了所提出方案的有效性。被归入称为“等效惯性”的单个变量中以复制车轮锁定事件。该变量的变化是通过在硬件在环平台上进行的广泛测试来捕获的,该平台包括与 IPG TruckMaker® 接口的气动制动器设置,并与 MATLAB/Simulink® 共同仿真,在不同的负载、道路和制动条件下。然后通过机械盘和电惯性在制动测功机中实现由此产生的等效惯性曲线。来自硬件在环和测功机测试的角速度曲线进行了比较以证实该框架。轮廓之间的密切相关性(由 100 rad/s 数量级的均方根偏差突出显示)确立了所提出方案的有效性。被归入称为“等效惯性”的单个变量中以复制车轮锁定事件。该变量的变化是通过在硬件在环平台上进行的广泛测试来捕获的,该平台包括与 IPG TruckMaker® 接口的气动制动器设置,并与 MATLAB/Simulink® 共同仿真,在不同的负载、道路和制动条件下。然后通过机械盘和电惯性在制动测功机中实现由此产生的等效惯性曲线。来自硬件在环和测功机测试的角速度曲线进行了比较以证实该框架。轮廓之间的密切相关性(由 100 rad/s 数量级的均方根偏差突出显示)确立了所提出方案的有效性。该变量的变化是通过在硬件在环平台上进行的广泛测试来捕获的,该平台包括与 IPG TruckMaker® 接口的气动制动器设置,并与 MATLAB/Simulink® 共同仿真,在不同的负载、道路和制动条件下。然后通过机械盘和电惯性在制动测功机中实现由此产生的等效惯性曲线。来自硬件在环和测功机测试的角速度曲线进行了比较以证实该框架。轮廓之间的密切相关性(由 100 rad/s 数量级的均方根偏差突出显示)确立了所提出方案的有效性。该变量的变化是通过在硬件在环平台上进行的广泛测试来捕获的,该平台包括与 IPG TruckMaker® 接口的气动制动器设置,并与 MATLAB/Simulink® 共同仿真,在不同的负载、道路和制动条件下。然后通过机械盘和电惯性在制动测功机中实现由此产生的等效惯性曲线。来自硬件在环和测功机测试的角速度曲线进行了比较以证实该框架。轮廓之间的密切相关性(由 100 rad/s 数量级的均方根偏差突出显示)确立了所提出方案的有效性。
更新日期:2020-08-29
down
wechat
bug