当前位置: X-MOL 学术J. Molluscan Stud. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Differential response of terrestrial gastropod and ground beetle communities to habitat change suggests an ecological association
Journal of Molluscan Studies ( IF 1.2 ) Pub Date : 2020-08-29 , DOI: 10.1093/mollus/eyaa025
A Crowe 1 , M J Gormally 1 , A O'Hanlon 1, 2
Affiliation  

Habitat loss and fragmentation are major threats to biodiversity. Species that cannot adapt rapidly, for example by active dispersal, are predicted to respond negatively to sudden changes in habitat condition, whereas species exhibiting a strong capacity for active dispersal may colonize alternative habitats (Beissinger, 2000). Terrestrial gastropods have limited dispersal capabilities and may be susceptible to sudden habitat changes, whereas ground beetles (Coleoptera: Carabidae), which are major predators of gastropods (Symondson, 2004; Němec & Horsák, 2019), are relatively fast-moving with greater dispersal capacities. Here, we report findings of the responses of both groups to habitat alterations representing different stages of the commercial forestry cycle. Preliminary work has shown that forest clearfelling has significant negative effects on mollusc species of conservation concern, such as the Kerry spotted slug Geomalacus maculosus Allman, 1843 (Johnston et al., 2018). However, nothing has been published regarding the responses of other gastropods to this pressure in Ireland, where the land area occupied by commercial forests has doubled over the past 30 years and will continue to increase (DAFM, 2017). Similarly, although there is much evidence to demonstrate the role of carabids as significant natural enemies of terrestrial gastropods (Symondson, 2004), much of our knowledge regarding carabid predation comes from studies in agricultural ecosystems (Bohan et al., 2001; Symondson et al., 2002; Pianezzola, Roth & Hatteland, 2013), where gastropods can cause substantial damage to agricultural and horticultural crops (Barker, 2002). We examined the structure of the ground-dwelling gastropod and carabid communities within a commercial conifer forest plantation to determine the responses of each group to habitat change. Gastropod and carabid communities were studied in three habitat types representing different stages of the forestry life cycle: (1) mature forestry stands of c. 60 years in age, which had been planted on blanket bog; (2) clearfelled areas (i.e. forests clearfelled 5 years prior to our study); and (3) adjacent unplanted blanket bog areas. Two homogeneous sampling sites, located 50 m apart, were studied within each of these three habitat types. The study was conducted at Cloosh Forest, Connemara, County Galway, Ireland (53°22′25.5″N; 9°24′35.7″W). A detailed description of the area is provided by Reich et al. (2017a). Refuge traps (De Sangosse, France) were employed to sample gastropods. These are 0.25-m2 sheets filled with absorbent cotton, with a reflective upper surface and perforated lower surface, and have been previously used for gastropod surveys in mature conifer forests, clearfelled areas and blanket bog habitats (McDonnell & Gormally, 2011; Johnston et al., 2016; Reich et al., 2017b). Refuge traps were placed on the forest floor in mature stands, over stumps in clearfelled areas and fastened to boulder outcrops on blanket bog sites (after McDonnell & Gormally, 2011) with a 2-m gap between adjacent traps (average space between trees on site). Carabids were sampled with pitfall traps using plastic cups (7 cm diameter, 12 cm depth) quarter filled with 10% ethylene glycol preservative. In an attempt to maximize specimen collection, five pitfall traps were set 30 cm north of a single refuge trap, and were pooled when transporting specimens back to the laboratory for analysis, such that one refuge trap corresponds to the contents of five pitfalls (Fig. 1A). A 10 cm × 10 cm corriboard sheet was placed 2.5 cm above each pitfall trap to prevent rain ingress. All traps were set and collected after 5 d during a 5-month study period (26 May to 27 October 2017), resulting in five discrete collections for analysis, each providing a snapshot of activity density over the preceding 5 d. At each study plot (two plots per habitat type), 5 slug traps and 25 pitfall traps were deployed (Fig. 1A). Therefore, in each of the three habitats, ten slug traps and ten pitfall catches (based on five pooled pitfall traps) were established (Fig. 1B). Specimens were identified in the laboratory using Rowson, Anderson & Symondson (2014) and Cameron (2004) for gastropods and Luff (2007) for carabids.

中文翻译:

陆生腹足纲动物和地面甲虫群落对生境变化的不同反应表明生态联系

生境的丧失和破碎化是对生物多样性的主要威胁。不能迅速适应(例如通过主动扩散)的物种预计会对栖息地条件的突然变化产生负面反应,而表现出强大的主动扩散能力的物种可能会在其他栖息地定居(贝辛格(2000)。陆栖腹足类动物的传播能力有限,可能容易受到栖息地突然变化的影响,而地面甲虫(鞘翅目:甲鱼科)则是腹足类动物的主要捕食者(西蒙森(Symondson),2004年; Němec&Horsák,2019)相对快速发展,具有更强的分散能力。在这里,我们报告了两组对代表商业林业周期不同阶段的生境变化的反应的发现。初步工作表明,森林砍伐对软体动物保护物种具有重大的负面影响,例如嘉里(Kerry)斑点Geomalacus maculosus Allman,1843年(Johnston等人,2018年)。但是,关于爱尔兰其他腹足动物对这种压力的反应,目前还没有任何相关报道。在爱尔兰,过去30年来,商品林占据的土地面积增加了一倍,并将继续增加(DAFM,2017)。同样,尽管有大量证据证明甲级角蛋白是陆地腹足纲动物的重要天敌((Symondson,2004年),我们关于甲级捕食的许多知识都来自农业生态系统的研究(Bohan et al。,2001;B。Symondson等人,2002;Pianezzola,Roth和Hatteland,2013年),腹足动物可能会严重破坏农业和园艺作物(Barker,2002年)。我们检查了商业针叶林人工林中地面栖脚动物和腹足类动物群落的结构,以确定每组对生境变化的响应。腹足纲和甲足纲群落在代表森林生命周期不同阶段的三种生境类型中进行了研究:(1)c的成熟林业林分。60岁,已种在毯子沼泽上;(2)砍伐的地区(即我们研究前5年砍伐的森林);(3)邻近未种植的毯子沼泽地。在这三种栖息地类型的每一个中,研究了相距50 m的两个同质采样点。该研究在爱尔兰戈尔韦郡康​​尼马拉的Cloosh森林中进行(北纬53°22′25.5”;西经9°24′35.7”)。该区域的详细说明由赖希。(2017a)。避难所(法国德桑戈斯)被用来采样腹足动物。这些是0.25-m 2的薄板,里面填充有吸收性棉,具有反射性的上表面和带孔的下表面,以前曾用于成熟针叶林,伐木场和沼泽沼泽生境的腹足类动物调查(McDonnell&Gormally,2011年; 约翰斯顿等。,2016;Reich et al。,2017b)。避难陷阱被放置在成熟林地的森林地面上,在砍伐的地区的树桩上,并固定在毯子沼泽地的露头露头上(之后McDonnell&Gormally,2011年),相邻陷阱之间的距离为2米(现场树木之间的平均空间)。使用装有10%乙二醇防腐剂的塑料杯(直径7厘米,深度12厘米)四分之一,用陷阱陷阱对钩扣进行采样。为了最大程度地收集标本,将五个陷阱陷阱设置在单个避难所以北30厘米处,并在将标本运回实验室进行分析时将其合并,以使一个避难所对应于五个陷阱的内容(图1A)。在每个陷阱陷阱上方2.5厘米处放置一块10厘米×10厘米的木板,以防止雨水进入。在为期5个月的研究期间(2017年5月26日至10月27日),在5天后设置并收集了所有陷阱,从而形成了五个离散的分析集,每个集合都提供了前5天的活动密度快照。在每个研究地块(每个栖息地类型两个地块)上,部署了5个子弹陷阱和25个陷阱陷阱(图2)。 1A)。因此,在这三个栖息地的每一个中,都建立了十个陷陷阱和十个陷阱陷阱(基于五个合并的陷阱陷阱)(图2)。 1B)。在实验室中使用Rowson,Anderson和Symondson(2014)和 Cameron(2004)的腹足动物和 Luff(2007)for carabids。
更新日期:2020-10-30
down
wechat
bug