当前位置: X-MOL 学术Solar RRL › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Graphene‐Based Materials in Planar Perovskite Solar Cells
Solar RRL ( IF 7.9 ) Pub Date : 2020-08-28 , DOI: 10.1002/solr.202000502
Jianjun Zhang 1, 2 , Jiajie Fan 3 , Bei Cheng 1 , Jiaguo Yu 1, 2 , Wingkei Ho 4
Affiliation  

Metal halide perovskite solar cells (PSCs) have recently become the most promising new‐generation solar cells, with a breathtaking growth of efficiency from 3.8% to 25.2% in just one decade. Scientists have abandoned the traditional high‐temperature‐processed mesoscopic layer of the initial mesoscopic PSCs in designing and manufacturing planar PSCs. This new feature endows planar PSCs with possibilities of low‐temperature processibility and large‐scale production. Nevertheless, the advancement of planar PSCs remains limited by two bottlenecks: charge loss and device degradation. To address these two issues, researchers have adopted graphene‐based materials, which demonstrate tremendous potentials due to their superb optical transparency, outstanding carrier mobility, remarkable electrical conductivity, and superior physicochemical stability. Defects inside films and at interfaces are regulated by graphene, thereby contributing to more efficient charge extraction and suppressed charge recombination. The graphene protective layer enhances the moisture and heat stability of planar PSCs, thereby extending the lifetime of devices. Herein, the typical synthesis methods of graphene and the recent applications of graphene in planar PSCs are summarized and discussed. Furthermore, concluding perspectives on current challenges and the future development of graphene in planar PSCs are proposed.

中文翻译:

平面钙钛矿太阳能电池中基于石墨烯的材料

金属卤化物钙钛矿太阳能电池(PSC)最近已成为最有前途的新一代太阳能电池,其效率在短短十年间从3.8%惊人地增长到25.2%。在设计和制造平面PSC时,科学家已经放弃了最初的中观PSC的传统高温加工中观层。这项新功能使平面式PSC具有低温可加工性和大规模生产的可能性。尽管如此,平面PSC的发展仍然受到两个瓶颈的限制:电荷损失和器件性能下降。为了解决这两个问题,研究人员采用了基于石墨烯的材料,这些材料由于其极好的光学透明度,出色的载流子迁移率,出色的电导率和出色的理化稳定性而具有巨大的潜力。膜内部和界面处的缺陷都受到石墨烯的限制,从而有助于更有效的电荷提取和抑制电荷复合。石墨烯保护层增强了平面PSC的水分和热稳定性,从而延长了器件的使用寿命。本文总结并讨论了石墨烯的典型合成方法以及石墨烯在平面PSC中的最新应用。此外,提出了关于平面PSC中石墨烯的当前挑战和未来发展的结论性观点。总结和讨论了石墨烯的典型合成方法以及石墨烯在平面PSC中的最新应用。此外,提出了关于平面PSC中石墨烯的当前挑战和未来发展的结论性观点。总结和讨论了石墨烯的典型合成方法以及石墨烯在平面PSC中的最新应用。此外,提出了关于平面PSC中石墨烯的当前挑战和未来发展的结论性观点。
更新日期:2020-11-06
down
wechat
bug