当前位置: X-MOL 学术Front. Mol. Biosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Time-Dependent Quantum Approach to Allostery and a Comparison With Light-Harvesting in Photosynthetic Phenomenon
Frontiers in Molecular Biosciences ( IF 5 ) Pub Date : 2020-06-19 , DOI: 10.3389/fmolb.2020.00156
Giovanni Villani

The allosteric effect is one of the most important processes in regulating the function of proteins, and the elucidation of this phenomenon plays a significant role in understanding emergent behaviors in biological regulation. In this process, a perturbation, generated by a ligand in a part of the macromolecule (the allosteric site), moves along this system and reaches a specific (active) site, dozens of Ångströms away, with a great efficiency. The dynamics of this perturbation in the macromolecule can model precisely the allosteric process. In this article, we will be studying the general characteristics of allostery, using a time-dependent quantum approach to obtain rules that apply to this kind of process. Considering the perturbation as a wave that moves within the molecular system, we will characterize the allosteric process with three of the properties of this wave in the active site: (1) ta, the characteristic time for reaching that site, (2) Aa, the amplitude of the wave in this site, and (3) Ba, its corresponding spectral broadening. These three parameters, together with the process mechanism and the perturbation efficiency in the process, can describe the phenomenon. One of the main purposes of this paper is to link the parameters ta, Aa, and Ba and the perturbation efficiency to the characteristics of the system. There is another fundamental process for life that has some characteristics similar to allostery: the light-harvesting (LH) process in photosynthesis. Here, as in allostery, two distant macromolecular sites are involved—two sites dozens of Ångströms away. In both processes, it is particularly important that the perturbation is distributed efficiently without dissipating in the infinite degrees of freedom within the macromolecule. The importance of considering quantum effects in the LH process is well documented in literature, and the quantum coherences are experimentally proven by time-dependent spectroscopic techniques. Given the existing similarities between these two processes in macromolecules, in this work, we suggest using Quantum Mechanics (QM) to study allostery.



中文翻译:

时间相关的量子变构方法与光合现象中光收集的比较

变构效应是调节蛋白质功能的最重要过程之一,这种现象的阐明在理解生物学调节中的紧急行为中起着重要作用。在此过程中,大分子的一部分(变构位点)中的配体产生的扰动沿着该系统移动,并到达一个特定的(活性)位点,效率很高,距离几十个Ångströms。大分子中这种扰动的动力学可以精确地模拟变构过程。在本文中,我们将研究变构的一般特征,使用时间相关的量子方法来获取适用于此类过程的规则。将扰动视为在分子系统内移动的波,a,即到达该位置的特征时间;(2)A a,在该位置的波幅;(3)B a,其相应的光谱展宽。这三个参数,再加上过程机理和过程中的摄动效率,可以描述这种现象。本文的主要目的之一是链接参数t a,A a和B a以及对系统特性的摄动效率。生命的另一个基本过程具有与变构相似的某些特征:光合作用中的采光(LH)过程。在这里,就像在变构中一样,涉及两个遥远的大分子位点-两个位点距离数十个Ångströms。在这两个过程中,特别重要的是,扰动必须有效地分布,而不会耗散大分子内的无限自由度。在LH过程中考虑量子效应的重要性已在文献中充分证明,并且量子相干性已通过时变光谱技术进行了实验证明。考虑到大分子这两个过程之间存在相似性,在这项工作中,我们建议使用量子力学(QM)研究变构。

更新日期:2020-08-28
down
wechat
bug