当前位置: X-MOL 学术J. Biophotonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Automated vessel diameter quantification and vessel tracing for OCT angiography.
Journal of Biophotonics ( IF 2.8 ) Pub Date : 2020-08-28 , DOI: 10.1002/jbio.202000248
Wei Wei 1 , Qinqin Zhang 1 , Samuel G Rayner 1, 2 , Wan Qin 1 , Yuxuan Cheng 1 , Fupeng Wang 1 , Ying Zheng 1 , Ruikang K Wang 1
Affiliation  

Optical coherence tomography angiography (OCTA) is capable of non‐invasively imaging the vascular networks within circulatory tissue beds in vivo. Following improvements in OCTA image quality, it is now possible to extract vascular parameters from imaging data to potentially facilitate the diagnosis and treatment of human disease. In this paper, we present a method for automated mapping of vessel diameter down to the individual capillary level, through gradient‐guided minimum radial distance (MRD). During validation using well‐characterized microfluidic flow phantoms, this method demonstrated superior consistency and a nearly threefold decrease in error when compared to currently accepted techniques. In addition, the MRD technique exhibited a high tolerance to rotation of the vasculature pattern. We also incorporated a modified A* path searching algorithm to trace vessel branches and calculate the diameter of each branch from the OCTA images. After validation in vitro, we applied these algorithms to the in vivo setting through analysis of mouse cortical vasculature. Our algorithm returned results that followed Murray's law, until reaching the capillary level, agreeing well with known physiological data. From our tracing process, vessel tortuosity and branching angle could also be measured. Our techniques provide a platform for the automated evaluation of the vasculature and may aid in diagnosis of vascular diseases, especially those resulting in regional early‐stage morphological changes.image

中文翻译:

OCT 血管造影的自动血管直径量化和血管追踪。

光学相干断层扫描血管造影术 (OCTA) 能够在体内对循环组织床内的血管网络进行非侵入性成像。随着 OCTA 图像质量的提高,现在可以从成像数据中提取血管参数,以促进人类疾病的诊断和治疗。在本文中,我们提出了一种通过梯度引导的最小径向距离 (MRD) 自动映射血管直径到单个毛细血管水平的方法。在使用充分表征的微流体流动体模进行验证期间,与目前接受的技术相比,该方法表现出优异的一致性和误差减少近三倍。此外,MRD 技术对脉管系统模式的旋转表现出高耐受性。我们还结合了改进的 A* 路径搜索算法来跟踪血管分支并从 OCTA 图像计算每个分支的直径。在体外验证后,我们通过分析小鼠皮质血管系统将这些算法应用于体内环境。我们的算法返回的结果遵循默里定律,直到达到毛细血管水平,与已知的生理数据非常吻合。从我们的追踪过程中,还可以测量血管曲折度和分支角度。我们的技术为血管系统的自动评估提供了一个平台,并可能有助于诊断血管疾病,尤其是那些导致区域早期形态变化的疾病。我们通过分析小鼠皮质血管系统将这些算法应用于体内环境。我们的算法返回的结果遵循默里定律,直到达到毛细血管水平,与已知的生理数据非常吻合。从我们的追踪过程中,还可以测量血管曲折度和分支角度。我们的技术为血管系统的自动评估提供了一个平台,并可能有助于诊断血管疾病,尤其是那些导致区域早期形态变化的疾病。我们通过分析小鼠皮质血管系统将这些算法应用于体内环境。我们的算法返回的结果遵循默里定律,直到达到毛细血管水平,与已知的生理数据非常吻合。从我们的追踪过程中,还可以测量血管曲折度和分支角度。我们的技术为血管系统的自动评估提供了一个平台,并可能有助于诊断血管疾病,尤其是那些导致区域早期形态变化的疾病。图片
更新日期:2020-08-28
down
wechat
bug