当前位置: X-MOL 学术Micropor. Mesopor. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mn-Ce oxide nanoparticles supported on nitrogen-doped reduced graphene oxide as low-temperature catalysts for selective catalytic reduction of nitrogen oxides
Microporous and Mesoporous Materials ( IF 5.2 ) Pub Date : 2020-08-28 , DOI: 10.1016/j.micromeso.2020.110588
Bora Ye , Jinwoo Kim , Myeung-jin Lee , Seung-Yeop Chun , Bora Jeong , Taewook Kim , Duck Hyun Lee , Hong-Dae Kim

In this study, we use nitrogen-doped reduced graphene oxide as a catalyst support for selective catalytic reduction (SCR) and extend its application to various catalysts by synthesizing graphene supports with high thermal stability and abundant surface functional groups. In order to clarify the role of graphene support, we used three supports, viz., graphene oxide (GO) and two N-doped reduced graphene oxide (N-rGO) samples obtained using two different doping agents, NH4NO3 and NH4OH. The dispersion of the catalytically active materials on the graphene support improved with nitrogen doping, as confirmed by the results of X-ray photoelectron spectroscopy and transmission electron microscopy, the texture properties evaluated by N2 adsorption/desorption measurements, and the thermal stability of the catalyst at the operating temperature evaluated by thermogravimetric analysis. The N-rGO supports inhibited the catalyst aggregation; they enhanced the dispersibility of Mn-Ce oxide nanoparticles owing to the rich anchoring sites on their surface, leading to a high NOx conversion efficiency of >90% at 200 °C.



中文翻译:

负载在氮掺杂还原氧化石墨烯上的Mn-Ce氧化物纳米颗粒作为用于选择性催化还原氮氧化物的低温催化剂

在这项研究中,我们将氮掺杂的还原石墨烯氧化物用作选择性催化还原(SCR)的催化剂载体,并通过合成具有高热稳定性和丰富的表面官能团的石墨烯载体,将其应用扩展到各种催化剂中。为了阐明石墨烯载体的作用,我们使用了三种载体,即氧化石墨烯(GO)和使用两种不同的掺杂剂NH 4 NO 3和NH获得的两个N掺杂的还原氧化石墨烯(N-rGO)样品。4 OH。X射线光电子能谱和透射电子显微镜的结果证实了氮掺杂对催化活性材料在石墨烯载体上的分散性的改善,并通过N 2评估了织构性质。通过热重分析评估吸附/解吸测量值,以及催化剂在工作温度下的热稳定性。N-rGO载体抑制了催化剂的聚集;它们增强由于其表面上的富锚定位点的Mn-Ce氧化物的纳米颗粒的分散性,导致了高的NO X在200> 90%的转化效率℃。

更新日期:2020-09-08
down
wechat
bug