当前位置: X-MOL 学术Int. J. Remote Sens. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Snow cover change and its relationship with land surface temperature and vegetation in northeastern North America from 2000 to 2017
International Journal of Remote Sensing ( IF 3.4 ) Pub Date : 2020-08-26 , DOI: 10.1080/01431161.2020.1779379
Kristen Thiebault 1 , Stephen Young 1
Affiliation  

ABSTRACT Snow cover has a major influence on the global energy balance through the reflection of shortwave solar radiation as well as influencing ecological processes and human activity. Numerous studies have found that snow cover extent (SCE) is decreasing in the Northern Hemisphere and this decline appears to be influencing temperatures and might be a major factor in the polar amplification. This research used satellite-derived Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover data (MOD10C2), Land Surface Temperature (LST) data (MOD11C3), and Normalized Difference Vegetation Index (NDVI) data (MOD13C2) to detect changes in SCE and its potential relationship to changes in land surface temperature and vegetation growth from 2000 to 2017 over northeastern North America. There is a lack of detailed research concerning these variables for northeastern North America. The data were composited into seasonal and annual (snow-year: September–June) groupings. Two different change analyses were undertaken: 1) significant change using the Mann–Kendall statistical analysis and 2) univariate differencing using three different time periods (3 years, 5 years, 8 years). A regression and correlation analysis was undertaken between SCE and LST and NDVI to determine the relationship between changing SCE and changes in LST and NDVI. Based on the Mann–Kendall statistical change analysis (p-value = 0.05) for the 16-day data (32-day data), the area of declining SCE was more than 12 times the area of increasing SCE (more than 5 times for 32-day data) with declines occurring in all seasons, most notably in fall, June and the entire snow-year. Based on the univariate differencing analysis, SCE declined more than increased 96% of the time. Based on the regression/correlation analysis, SCE explains variability in LST (NDVI) for the snow-year: 43% (51%), spring: 31% (22%), June 34% (no significant relationship), fall: 40% (no significant relationship), and winter with no significant relationship (30%). It was determined that there is a weak to moderate inverse relationship between SCE and LST and a similar, but less prominent relationship between SCE and NDVI. A multiple regression/correlation with SCE and LST (independent) and NDVI (dependent), LST was a better predictor of NDVI than SCE. This relationship indicates that there is a potential positive feedback mechanism warming the region and increasing the region’s NDVI.

中文翻译:

2000-2017年北美东北部积雪变化及其与地表温度和植被的关系

摘要 积雪通过反射短波太阳辐射以及影响生态过程和人类活动,对全球能量平衡产生重大影响。大量研究发现,北半球的积雪范围 (SCE) 正在下降,这种下降似乎正在影响温度,并且可能是极地放大的主要因素。该研究使用卫星衍生的中分辨率成像光谱仪 (MODIS) 积雪数据 (MOD10C2)、地表温度 (LST) 数据 (MOD11C3) 和归一化差异植被指数 (NDVI) 数据 (MOD13C2) 来检测 SCE 及其变化2000 年至 2017 年北美东北部地表温度变化和植被生长的潜在关系。缺乏对北美东北部这些变量的详细研究。数据被合成为季节性和年度(雪年:9 月至 6 月)分组。进行了两种不同的变化分析:1) 使用 Mann-Kendall 统计分析的显着变化和 2) 使用三个不同时间段(3 年、5 年、8 年)的单变量差异。对 SCE 与 LST 和 NDVI 之间进行回归和相关分析,以确定 SCE 变化与 LST 和 NDVI 变化之间的关系。根据 16 天数据(32 天数据)的 Mann-Kendall 统计变化分析(p 值 = 0.05),SCE 下降的面积是 SCE 增加面积的 12 倍以上(超过 5 倍) 32 天数据),所有季节都出现下降,尤其是秋季,六月和整个雪年。根据单变量差异分析,SCE 下降超过 96% 的时间。基于回归/相关分析,SCE 解释了雪年 LST (NDVI) 的变化:43% (51%),春季:31% (22%),6 月 34%(无显着关系),秋季:40 %(无显着关系),与冬季无显着关系(30%)。已确定 SCE 和 LST 之间存在弱到中等的反向关系,SCE 和 NDVI 之间存在类似但不太显着的关系。与 SCE 和 LST(独立)和 NDVI(相关)的多元回归/相关性,LST 是比 SCE 更好的 NDVI 预测因子。这种关系表明,存在一个潜在的正反馈机制,使该地区变暖并增加了该地区的 NDVI。根据单变量差异分析,SCE 下降超过 96% 的时间。基于回归/相关分析,SCE 解释了雪年 LST (NDVI) 的变化:43% (51%),春季:31% (22%),6 月 34%(无显着关系),秋季:40 %(无显着关系),与冬季无显着关系(30%)。已确定 SCE 和 LST 之间存在弱到中度的反向关系,SCE 和 NDVI 之间存在类似但不太显着的关系。与 SCE 和 LST(独立)和 NDVI(相关)的多元回归/相关性,LST 是比 SCE 更好的 NDVI 预测因子。这种关系表明,存在一个潜在的正反馈机制,使该地区变暖并增加了该地区的 NDVI。根据单变量差异分析,SCE 下降超过 96% 的时间。基于回归/相关分析,SCE 解释了雪年 LST (NDVI) 的变化:43% (51%),春季:31% (22%),6 月 34%(无显着关系),秋季:40 %(无显着关系),与冬季无显着关系(30%)。已确定 SCE 和 LST 之间存在弱到中等的反向关系,SCE 和 NDVI 之间存在类似但不太显着的关系。与 SCE 和 LST(独立)和 NDVI(相关)的多元回归/相关性,LST 是比 SCE 更好的 NDVI 预测因子。这种关系表明,存在一个潜在的正反馈机制,使该地区变暖并增加了该地区的 NDVI。基于回归/相关分析,SCE 解释了雪年 LST (NDVI) 的变化:43% (51%),春季:31% (22%),6 月 34%(无显着关系),秋季:40 %(无显着关系),与冬季无显着关系(30%)。已确定 SCE 和 LST 之间存在弱到中度的反向关系,SCE 和 NDVI 之间存在类似但不太显着的关系。与 SCE 和 LST(独立)和 NDVI(相关)的多元回归/相关性,LST 是比 SCE 更好的 NDVI 预测因子。这种关系表明,存在一个潜在的正反馈机制,使该地区变暖并增加了该地区的 NDVI。基于回归/相关分析,SCE 解释了雪年 LST (NDVI) 的变化:43% (51%),春季:31% (22%),6 月 34%(无显着关系),秋季:40 %(无显着关系),与冬季无显着关系(30%)。已确定 SCE 和 LST 之间存在弱到中等的反向关系,SCE 和 NDVI 之间存在类似但不太显着的关系。与 SCE 和 LST(独立)和 NDVI(相关)的多元回归/相关性,LST 是比 SCE 更好的 NDVI 预测因子。这种关系表明,存在一个潜在的正反馈机制,使该地区变暖并增加了该地区的 NDVI。六月 34%(无显着关系),秋季:40%(无显着关系),冬季无显着关系(30%)。已确定 SCE 和 LST 之间存在弱到中等的反向关系,SCE 和 NDVI 之间存在类似但不太显着的关系。与 SCE 和 LST(独立)和 NDVI(相关)的多元回归/相关性,LST 是比 SCE 更好的 NDVI 预测因子。这种关系表明,存在一个潜在的正反馈机制,使该地区变暖并增加了该地区的 NDVI。六月 34%(无显着关系),秋季:40%(无显着关系),冬季无显着关系(30%)。已确定 SCE 和 LST 之间存在弱到中等的反向关系,SCE 和 NDVI 之间存在类似但不太显着的关系。与 SCE 和 LST(独立)和 NDVI(相关)的多元回归/相关性,LST 是比 SCE 更好的 NDVI 预测因子。这种关系表明,存在一个潜在的正反馈机制,使该地区变暖并增加了该地区的 NDVI。与 SCE 和 LST(独立)和 NDVI(相关)的多元回归/相关性,LST 是比 SCE 更好的 NDVI 预测因子。这种关系表明,存在一个潜在的正反馈机制,使该地区变暖并增加了该地区的 NDVI。与 SCE 和 LST(独立)和 NDVI(相关)的多元回归/相关性,LST 是比 SCE 更好的 NDVI 预测因子。这种关系表明,存在一个潜在的正反馈机制,使该地区变暖并增加了该地区的 NDVI。
更新日期:2020-08-26
down
wechat
bug