当前位置: X-MOL 学术J. Cryst. Growth › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Low-pressure chemical vapor deposition of Cu on Ru using CuI as precursor
Journal of Crystal Growth ( IF 1.8 ) Pub Date : 2020-11-01 , DOI: 10.1016/j.jcrysgro.2020.125849
Taiji Nishikawa , Kensuke Horiuchi , Tatsuya Joutsuka , Satoshi Yamauchi

Abstract Low-pressure chemical vapor deposition (LPCVD) of Cu using copper(I)-iodide (CuI) as precursor was experimentally studied at low temperatures around 300 °C with understanding molecular structure of the precursor in the gas-phase. CuI was sublimated at temperatures around 300 °C in an evacuated reactor of LPCVD apparatus, while CuI was evaporated at high temperatures above 600 °C by atmospheric pressure CVD. Density functional theory (DFT) calculations supported CuI-trimer ((CuI)3) highly stabilized as an in-plane triangle is a major species in the gas phase and predicted the trimer is deformed by metal-atom such as Ru and Cu. Experimental results of the LPCVD, that preferentially oriented Cu(1 1 1) grains were deposited on Ru(0 0 1) at low temperatures around 300 °C but any deposits was not formed on SiOx/Si by the LPCVD, clearly indicating the activation energy of the precursor dissociation on the metal surfaces is lower than that on the dielectrics. Further, significantly low activation energy for the Cu-deposition rate dependent on the substrate temperature suggested the dissociation of the precursor is not driven by the thermal activation in the gas phase but by adsorption on the metal surfaces. Furthermore, the activation energy (85 kJ/mol) for the Cu-deposition rate dependent on the substrate temperature was found to be much lower than that for the dissociation of the CuI monomer (285 kJ/mol) or trimer (400 kJ/mol) in the gas phase. This finding indicates a catalytic dissociation of CuI on Ru and Cu metallic surfaces.

中文翻译:

以CuI为前驱体在Ru上低压化学气相沉积Cu

摘要 使用碘化铜 (CuI) 作为前驱体,在 300 °C 左右的低温下对 Cu 的低压化学气相沉积 (LPCVD) 进行了实验研究,并了解了气相中前驱体的分子结构。CuI 在 LPCVD 设备的真空反应器中在 300°C 左右的温度下升华,而 CuI 在 600°C 以上的高温下通过常压 CVD 蒸发。密度泛函理论 (DFT) 计算支持 CuI-三聚体 ((CuI)3) 高度稳定,因为面内三角形是气相中的主要物质,并预测三聚体会被金属原子(如 Ru 和 Cu)变形。LPCVD 的实验结果,优先取向的 Cu(1 1 1) 晶粒在 300 °C 左右的低温下沉积在 Ru(0 0 1) 上,但 LPCVD 在 SiOx/Si 上没有形成任何沉积物,清楚地表明金属表面上前驱体离解的活化能低于电介质上的活化能。此外,依赖于基板温度的 Cu 沉积速率的显着低活化能表明前体的解离不是由气相中的热活化驱动,而是由金属表面上的吸附驱动。此外,发现依赖于基板温度的 Cu 沉积速率的活化能 (85 kJ/mol) 远低于 CuI 单体 (285 kJ/mol) 或三聚体 (400 kJ/mol) 解离的活化能) 气相。这一发现表明在 Ru 和 Cu 金属表面上的 CuI 催化解离。依赖于基板温度的 Cu 沉积速率的活化能显着低,这表明前体的解离不是由气相中的热活化驱动,而是由金属表面的吸附驱动。此外,发现依赖于基板温度的 Cu 沉积速率的活化能 (85 kJ/mol) 远低于 CuI 单体 (285 kJ/mol) 或三聚体 (400 kJ/mol) 解离的活化能) 气相。这一发现表明在 Ru 和 Cu 金属表面上的 CuI 催化解离。依赖于基板温度的 Cu 沉积速率的活化能显着低,这表明前体的解离不是由气相中的热活化驱动,而是由金属表面的吸附驱动。此外,发现依赖于基板温度的 Cu 沉积速率的活化能 (85 kJ/mol) 远低于 CuI 单体 (285 kJ/mol) 或三聚体 (400 kJ/mol) 解离的活化能) 气相。这一发现表明在 Ru 和 Cu 金属表面上的 CuI 催化解离。发现依赖于基板温度的 Cu 沉积速率的活化能 (85 kJ/mol) 远低于 CuI 单体 (285 kJ/mol) 或三聚体 (400 kJ/mol) 在气相。这一发现表明在 Ru 和 Cu 金属表面上的 CuI 催化解离。发现依赖于基板温度的 Cu 沉积速率的活化能 (85 kJ/mol) 远低于 CuI 单体 (285 kJ/mol) 或三聚体 (400 kJ/mol) 在气相。这一发现表明在 Ru 和 Cu 金属表面上的 CuI 催化解离。
更新日期:2020-11-01
down
wechat
bug