当前位置: X-MOL 学术Plasma Sources Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
N2-H2 capacitively coupled radio-frequency discharges at low pressure. Part I. Experimental results: effect of the H2 amount on electrons, positive ions and ammonia formation.
Plasma Sources Science and Technology ( IF 3.8 ) Pub Date : 2020-08-26 , DOI: 10.1088/1361-6595/ab9b1a
Audrey Chatain 1, 2 , Miguel Jimnez-Redondo 3 , Ludovic Vettier 1 , Olivier Guaitella 2 , Nathalie Carrasco 1 , Luis Lemos Alves 4 , Luis Marques 3 , Guy Cernogora 1
Affiliation  

The mixing of N2 with H2 leads to very different plasmas from pure N2 and H2 plasma discharges. Numerous issues are therefore raised involving the processes leading to ammonia (NH3) formation. The aim of this work is to better characterize capacitively-coupled radiofrequency plasma discharges in N2 with few percents of H2 (up to 5%), at low pressure (0.3 to 1 mbar) and low coupled power (3 to 13 W). Both experimental measurements and numerical simulations are performed. For clarity, we separated the results in two complementary parts. The actual one (first part), presents the details on the experimental measurements, while the second focuses on the simulation, a hybrid model combining a 2D fluid module and a 0D kinetic module. Electron density is measured by a resonant cavity method. It varies from 0.4 to 5.109 cm-3, corresponding to ionization degrees from 2.10-8 to 4.10-7. Ammonia density is quantified by combining IR absorption and mass spectrometry. It increases linearly with the amount of H2 (up to 3.1013 cm-3 at 5% H2). On the contrary, it is constant with pressure, which suggests the dominance of surface processes on the formation of ammonia. Positive ions are measured by mass spectrometry. Nitrogen-bearing ions are hydrogenated by the injection of H2, N2H+ being the major ion as soon as the amount of H2 is > 1%. The increase of pressure leads to an increase of secondary ions formed by ion/radical – neutral collisions (ex: N2H+, NH4+, H3+), while an increase of the coupled power favors ions formed by direct ionization (ex: N2+, NH3+, H2+).

中文翻译:

N 2 -H 2电容耦合射频在低压下放电。第一部分实验结果:H 2量对电子、正离子和氨形成的影响。

N2 与 H2 的混合导致与纯 N2 和 H2 等离子体放电截然不同的等离子体。因此提出了许多问题,涉及导致氨 (NH3) 形成的过程。这项工作的目的是在低压 (0.3 至 1 mbar) 和低耦合功率 (3 至 13 W) 下,更好地表征 N2 中的电容耦合射频等离子体放电,其中包含少量 H2(高达 5%)。进行了实验测量和数值模拟。为清楚起见,我们将结果分为两个互补部分。实际部分(第一部分)介绍实验测量的详细信息,而第二部分则侧重于模拟,即结合 2D 流体模块和 0D 动力学模块的混合模型。电子密度通过谐振腔法测量。它从 0.4 到 5.109 cm-3 不等,对应的电离度从 2.10-8 到 4.10-7。氨密度通过结合红外吸收和质谱来量化。它随着 H2 的量线性增加(在 5% H2 时高达 3.1013 cm-3)。相反,它随压力恒定,这表明表面过程对氨的形成起主导作用。通过质谱法测量正离子。含氮离子通过注入 H2 进行氢化,一旦 H2 的量 > 1%,N2H+ 就是主要离子。压力的增加导致离子/自由基-中性碰撞形成的二次离子增加(例如:N2H+、NH4+、H3+),而耦合功率的增加有利于直接电离形成的离子(例如:N2+、NH3+、H2+ )。它随着 H2 的量线性增加(在 5% H2 时高达 3.1013 cm-3)。相反,它随压力恒定,这表明表面过程对氨的形成起主导作用。通过质谱法测量正离子。含氮离子通过注入 H2 进行氢化,一旦 H2 的量 > 1%,N2H+ 就是主要离子。压力的增加导致离子/自由基-中性碰撞形成的二次离子增加(例如:N2H+、NH4+、H3+),而耦合功率的增加有利于直接电离形成的离子(例如:N2+、NH3+、H2+ )。它随着 H2 的量线性增加(在 5% H2 时高达 3.1013 cm-3)。相反,它随压力恒定,这表明表面过程对氨的形成起主导作用。通过质谱法测量正离子。含氮离子通过注入 H2 进行氢化,一旦 H2 的量 > 1%,N2H+ 就是主要离子。压力的增加导致离子/自由基-中性碰撞形成的二次离子增加(例如:N2H+、NH4+、H3+),而耦合功率的增加有利于直接电离形成的离子(例如:N2+、NH3+、H2+ )。含氮离子通过注入 H2 进行氢化,一旦 H2 的量 > 1%,N2H+ 就是主要离子。压力的增加导致离子/自由基-中性碰撞形成的二次离子增加(例如:N2H+、NH4+、H3+),而耦合功率的增加有利于直接电离形成的离子(例如:N2+、NH3+、H2+ )。含氮离子通过注入 H2 进行氢化,一旦 H2 的量 > 1%,N2H+ 就是主要离子。压力的增加导致离子/自由基-中性碰撞形成的二次离子增加(例如:N2H+、NH4+、H3+),而耦合功率的增加有利于直接电离形成的离子(例如:N2+、NH3+、H2+ )。
更新日期:2020-08-26
down
wechat
bug