当前位置: X-MOL 学术J. Group Theory › 论文详情
Right-angled Artin groups and enhanced Koszul properties
Journal of Group Theory ( IF 0.466 ) Pub Date : 2020-08-25 , DOI: 10.1515/jgth-2020-0049
Alberto Cassella; Claudio Quadrelli

Let 𝔽 be a finite field. We prove that the cohomology algebra H(GΓ,F) with coefficients in 𝔽 of a right-angled Artin group GΓ is a strongly Koszul algebra for every finite graph Γ. Moreover, H(GΓ,F) is a universally Koszul algebra if, and only if, the graph Γ associated to the group GΓ has the diagonal property. From this, we obtain several new examples of pro-𝑝 groups, for a prime number 𝑝, whose continuous cochain cohomology algebra with coefficients in the field of 𝑝 elements is strongly and universally (or strongly and non-universally) Koszul. This provides new support to a conjecture on Galois cohomology of maximal pro-𝑝 Galois groups of fields formulated by J. Mináč et al.
更新日期:2020-09-18

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
科研绘图
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
自然职场线上招聘会
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
阿拉丁试剂right
张晓晨
田蕾蕾
李闯创
刘天飞
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
X-MOL
清华大学
廖矿标
陈永胜
试剂库存
down
wechat
bug